Topology Preserving Isosurface Extraction for Geometry Processing

We address the problem of computing a topology preserving isosurface from a volumetric grid using Marching Cubes for geometry processing applications. We present a novel adaptive subdivision algorithm to generate a volumetric grid. Our algorithm ensures that every grid cell satisfies certain sampling criteria. We show that these sampling criteria are sufficient to ensure that the isosurface extracted from the grid using Marching Cubes is topologically equivalent to the exact isosurface: both the exact isosurface and the extracted isosurface have the same genus and connectivity. We use our algorithm for accurate boundary evaluation of Boolean combinations of polyhedra and low degree algebraic primitives, Minkowski sum computation, model simplification, and remeshing. The running time of our algorithm varies between a few seconds for simple models composed of a few thousand triangles and tens of seconds for complex polyhedral models represented using hundreds of thousands of triangles.

[1]  Mario Botsch,et al.  Feature sensitive surface extraction from volume data , 2001, SIGGRAPH.

[2]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[3]  Paolo Cignoni,et al.  Optimal isosurface extraction from irregular volume data , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[4]  J. Wilhelms,et al.  Topological considerations in isosurface generation extended abstract , 1990, VVS.

[5]  Alexei Sourin,et al.  Function representation in geometric modeling: concepts, implementation and applications , 1995, The Visual Computer.

[6]  Dinesh Manocha,et al.  Star-shaped Roadmaps - A Deterministic Sampling Approach for Complete Motion Planning , 2005, Robotics: Science and Systems.

[7]  Jihad El-Sana,et al.  Controlled simplification of genus for polygonal models , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[8]  Jörg Peters,et al.  Efficient One-Sided Linearization of Spline Geometry , 2003, IMA Conference on the Mathematics of Surfaces.

[9]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[10]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[11]  Charles D. Hansen,et al.  A Case Study of Isosurface Extraction Algorithm Performance , 2000, VisSym.

[12]  Christoph M. Hoffmann,et al.  Robustness in Geometric Computations , 2001, J. Comput. Inf. Sci. Eng..

[13]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[14]  Han-Wei Shen,et al.  A Near Optimal Isosurface Extraction Algorithm Using the Span Space , 1996, IEEE Trans. Vis. Comput. Graph..

[15]  Gregory M. Nielson,et al.  Dual marching cubes , 2004, IEEE Visualization 2004.

[16]  Rüdiger Westermann,et al.  Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces , 1999, The Visual Computer.

[17]  Paolo Cignoni,et al.  Reconstruction of topologically correct and adaptive trilinear isosurfaces , 2000, Comput. Graph..

[18]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[19]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[20]  Valerio Pascucci,et al.  Fast isocontouring for improved interactivity , 1996, VVS '96.

[21]  John Keyser,et al.  Handling degeneracies in exact boundary evaluation , 2004, SM '04.

[22]  Michael Garland,et al.  Permission grids: practical, error-bounded simplification , 2002, TOGS.

[23]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[24]  Arie E. Kaufman,et al.  Volume-sampled 3D modeling , 1994, IEEE Computer Graphics and Applications.

[25]  A. Ricci,et al.  A Constructive Geometry for Computer Graphics , 1973, Computer/law journal.

[26]  Roni Yagel,et al.  Octree-based decimation of marching cubes surfaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[27]  Michael E. Hohmeyer,et al.  A surface intersection algorithm based on loop detection , 1991, SMA '91.

[28]  Ken Brodlie,et al.  Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing , 2003, IEEE Trans. Vis. Comput. Graph..

[29]  P. Giblin Computational geometry: algorithms and applications (2nd edn.), by M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Pp. 367. £20.50. 2000. ISBN 3 540 65620 0 (Springer-Verlag). , 2001, The Mathematical Gazette.

[30]  Herbert Edelsbrunner,et al.  Triangulating topological spaces , 1994, SCG '94.

[31]  Dinesh Manocha,et al.  A Simple Algorithm for Complete Motion Planning of Translating Polyhedral Robots , 2006, WAFR.

[32]  William E. Lorensen,et al.  Marching through the Visible Man , 1995, Proceedings Visualization '95.

[33]  Touradj Ebrahimi,et al.  MESH: measuring errors between surfaces using the Hausdorff distance , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[34]  Dinesh Manocha,et al.  Topology preserving surface extraction using adaptive subdivision , 2004, SGP '04.

[35]  B. Natarajan On generating topologically consistent isosurfaces from uniform samples , 1994, The Visual Computer.

[36]  Ronald N. Perry,et al.  Kizamu: a system for sculpting digital characters , 2001, SIGGRAPH.

[37]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[38]  Raimund Seidel The Nature and Meaning of Perturbations in Geometric Computing , 1998, Discret. Comput. Geom..

[39]  Jean-Daniel Boissonnat,et al.  Isotopic Implicit Surface Meshing , 2004, STOC '04.

[40]  Gershon Elber,et al.  The Convex Hull of Freeform Surfaces , 2004, Computing.

[41]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[42]  Alexander A. Pasko,et al.  Dynamic meshes for accurate polygonization of implicit surfaces with sharp features , 2001, Proceedings International Conference on Shape Modeling and Applications.

[43]  Cláudio T. Silva,et al.  Three dimensional visualization of proteins in cellular interactions , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[44]  Luiz Velho,et al.  Adaptive Polygonization of Implicit surfaces using Simplicial Decomposition and boundary Constraints , 1990, Eurographics.

[45]  David E. Breen,et al.  3D Scan-Conversion of CSG Models into Distance, Closest-Point and Colour Volumes , 2000, Volume Graphics.

[46]  William E. Lorensen,et al.  Implicit modeling of swept surfaces and volumes , 1994, Proceedings Visualization '94.

[47]  Roberto Scopigno,et al.  Discretized Marching Cubes , 1994, Proceedings Visualization '94.

[48]  M. V. D. Panne,et al.  Topological manipulation of isosurfaces , 2004 .

[49]  Leif Kobbelt,et al.  Isosurface reconstruction with topology control , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[50]  Wei Hong,et al.  Dual contouring with topology-preserving simplification using enhanced cell representation , 2004, IEEE Visualization 2004.

[51]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[52]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[53]  R. Pajarola,et al.  Topology preserving and controlled topology simplifying multiresolution isosurface extraction , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[54]  Dinesh Manocha,et al.  Accurate Minkowski sum approximation of polyhedral models , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[55]  Brian Wyvill,et al.  Introduction to Implicit Surfaces , 1997 .

[56]  Scott Schaefer,et al.  Dual marching cubes: primal contouring of dual grids , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[57]  Amitabh Varshney,et al.  Controlled Topology Simplification , 1996, IEEE Trans. Vis. Comput. Graph..

[58]  Dinesh Manocha,et al.  Feature-sensitive subdivision and isosurface reconstruction , 2003, IEEE Visualization, 2003. VIS 2003..

[59]  Paul Ning,et al.  An evaluation of implicit surface tilers , 1993, IEEE Computer Graphics and Applications.

[60]  Robert A. Hummel,et al.  Exploiting Triangulated Surface Extraction Using Tetrahedral Decomposition , 1995, IEEE Trans. Vis. Comput. Graph..

[61]  Arthur W. Toga,et al.  Surface mapping brain function on 3D models , 1990, IEEE Computer Graphics and Applications.

[62]  Brian Wyvill,et al.  Polygonization of Implicit Surfaces with Constructive solid Geometry , 1996, Int. J. Shape Model..

[63]  James R. Munkres,et al.  Topology; a first course , 1974 .

[64]  Greg Turk,et al.  Simplification and Repair of Polygonal Models Using Volumetric Techniques , 2003, IEEE Trans. Vis. Comput. Graph..

[65]  John C. Hart,et al.  Guaranteeing the topology of an implicit surface polygonization for interactive modeling , 1997, SIGGRAPH Courses.

[66]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[67]  Andrea Bottino,et al.  How to Shrinkwrap through a Critical Point : an Algorithm for the Adaptive Triangulation of Iso-Surfaces with Arbitrary Topology , 1996 .

[68]  Gert Vegter,et al.  Isotopic approximation of implicit curves and surfaces , 2004, SGP '04.

[69]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[70]  P. D. Heermann Production visualization for the ASCI One TeraFLOPS machine , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[71]  Henry Fuchs,et al.  Optimal surface reconstruction from planar contours , 1977, SIGGRAPH.

[72]  John M. Snyder,et al.  Interval analysis for computer graphics , 1992, SIGGRAPH.

[73]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[74]  A Koide,et al.  Polyhedral approximation approach to molecular orbital graphics , 1986 .

[75]  Dinesh Manocha,et al.  Implicit Representation of Rational Parametric Surfaces , 1992, J. Symb. Comput..

[76]  Mark Hall,et al.  Adaptive polygonalization of implicitly defined surfaces , 1990, IEEE Computer Graphics and Applications.