Electrochemically Self-Doped TiO2 Nanotube Arrays for Supercapacitors

The application of highly ordered TiO2 nanotube arrays (NTAs) for energy storage devices such as supercapacitors has been attractive and of great interest owing to their large surface area and greatly improved charge-transfer pathways compared to those of nonoriented structures. Modification of the semiconductor nature of TiO2 is important for its application in constructing high-performance supercapacitors. Hence, the present study demonstrates a novel method involving fabrication of self-doped TiO2 NTAs by a simple cathodic polarization treatment on the pristine TiO2 NTAs to achieve improved conductivity and capacitive properties of TiO2. The self-doped TiO2 NTAs at −1.4 V (vs SCE) exhibited 5 orders of magnitude improvement on carrier density and 39 times enhancement in capacitance compared to those of the pristine TiO2 NTAs. Impedance analysis based on a proposed simplified transmission line model proved that the enhanced capacitive behavior of the self-doped TiO2 NTAs was due to a decrease of charge-...

[1]  He Zhou,et al.  Enhancing the capacitance of TiO2 nanotube arrays by a facile cathodic reduction process , 2013 .

[2]  F. Fabregat‐Santiago,et al.  Interpretation of Cyclic Voltammetry Measurements of Thin Semiconductor Films for Solar Fuel Applications. , 2013, The journal of physical chemistry letters.

[3]  Abraham L. Jurovitzki,et al.  Redox-induced enhancement in interfacial capacitance of the titania nanotube/bismuth oxide composite electrode. , 2013, ACS applied materials & interfaces.

[4]  Teng Zhai,et al.  H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors , 2013, Advanced materials.

[5]  M. Xing,et al.  Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis , 2013 .

[6]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[7]  Yu-Lun Chueh,et al.  Fiber-based all-solid-state flexible supercapacitors for self-powered systems. , 2012, ACS nano.

[8]  Yongsheng Chen,et al.  An overview of the applications of graphene-based materials in supercapacitors. , 2012, Small.

[9]  Jong Hyeok Park,et al.  The preparation of highly ordered TiO2 nanotube arrays by an anodization method and their applications. , 2012, Chemical communications.

[10]  S. Zein,et al.  MULTIWALLED CARBON NANOTUBES BASED NANOCOMPOSITES FOR SUPERCAPACITORS: A REVIEW OF ELECTRODE MATERIALS , 2012 .

[11]  M. Salari,et al.  Enhancement of the electrochemical capacitance of TiO2 nanotube arrays through controlled phase transformation of anatase to rutile. , 2012, Physical chemistry chemical physics : PCCP.

[12]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[13]  S. H. Tan,et al.  Energy and environmental applications of carbon nanotubes , 2012, Environmental Chemistry Letters.

[14]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[15]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[16]  G. Cui,et al.  One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage , 2011 .

[17]  P. Schmuki,et al.  Vertically aligned mixed V2O5-TiO2 nanotube arrays for supercapacitor applications. , 2011, Chemical communications.

[18]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[19]  Gil S. Lee,et al.  Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnO(x) composites for high-performance energy storage devices. , 2011, Nano letters.

[20]  M. Xing,et al.  An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. , 2011, Chemical communications.

[21]  Y. Tong,et al.  Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances , 2011 .

[22]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[23]  Huakun Liu,et al.  Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies , 2011 .

[24]  Xin Zhao,et al.  The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. , 2011, Nanoscale.

[25]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[26]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[27]  Xiaodong Li,et al.  Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. , 2011, Nano letters.

[28]  A. J. Frank,et al.  Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. , 2010, Nano letters.

[29]  Jun Li,et al.  Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays , 2010 .

[30]  Feiyu Kang,et al.  Recent progress on manganese dioxide based supercapacitors , 2010 .

[31]  Xiaodong Wu,et al.  Graphene oxide--MnO2 nanocomposites for supercapacitors. , 2010, ACS nano.

[32]  P. Schmuki,et al.  Semimetallic TiO2 nanotubes. , 2009, Angewandte Chemie.

[33]  M. Orazem,et al.  Impedance of a Disk Electrode with Reactions Involving an Adsorbed Intermediate: Experimental and Simulation Analysis , 2009 .

[34]  Andrei Ghicov,et al.  Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. , 2009, Chemical communications.

[35]  P. Schmuki,et al.  Self-Organized Anodic TiO2 Nanotube Arrays Functionalized by Iron Oxide Nanoparticles , 2009 .

[36]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[37]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[38]  J. Macák,et al.  High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes. , 2008, Small.

[39]  Juan Bisquert,et al.  High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. , 2008, Journal of the American Chemical Society.

[40]  Juan Bisquert,et al.  A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors , 2008 .

[41]  J. Macák,et al.  Filling of TiO2 Nanotubes by Self‐Doping and Electrodeposition , 2007 .

[42]  A. Reddy,et al.  Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes , 2007 .

[43]  J. Macák,et al.  Characterization of electronic properties of TiO2 nanotube films , 2007 .

[44]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[45]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[46]  J. Jorcin,et al.  CPE analysis by local electrochemical impedance spectroscopy , 2006 .

[47]  M. Miyauchi,et al.  Electrochromism of titanate-based nanotubes. , 2005, Angewandte Chemie.

[48]  Xue-ming Ma,et al.  Phase transformations in nanocrystalline TiO2 milled in different milling atmospheres , 2004 .

[49]  L. Kavan,et al.  Charge transfer reductive doping of single crystal TiO2 anatase , 2004 .

[50]  Juan Bisquert,et al.  Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells , 2004 .

[51]  Juan Bisquert,et al.  Cyclic Voltammetry Studies of Nanoporous Semiconductors. Capacitive and Reactive Properties of Nanocrystalline TiO2 Electrodes in Aqueous Electrolyte , 2003 .

[52]  Juan Bisquert,et al.  Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells , 2003 .

[53]  Juan Bisquert,et al.  Decoupling of Transport, Charge Storage, and Interfacial Charge Transfer in the Nanocrystalline TiO2/Electrolyte System by Impedance Methods , 2002 .

[54]  Juan Bisquert,et al.  Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer , 2002 .

[55]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[56]  P. Simon,et al.  Multi electrode prismatic power prototype carbon/carbon supercapacitors , 1999 .

[57]  Donald Fitzmaurice,et al.  ELECTRON ACCUMULATION IN NANOSTRUCTURED TIO2 (ANATASE) ELECTRODES , 1999 .

[58]  J. Hupp,et al.  Energetics of the Nanocrystalline Titanium Dioxide/Aqueous Solution Interface: Approximate Conduction Band Edge Variations between H0 = −10 and H- = +26 , 1999 .

[59]  Venkat Srinivasan,et al.  Mathematical Modeling of Electrochemical Capacitors , 1999 .

[60]  G. Boschloo,et al.  Spectroelectrochemical Investigation of Surface States in Nanostructured TiO2 Electrodes , 1999 .

[61]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[62]  E. Mccafferty,et al.  Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method , 1998 .