Innovations in Food Packaging Materials

Over the last decade, food packaging technology has gone through a fast and significant development especially in case of innovative materials, where some of them are already commercially applied. This chapter explores the innovations in food packaging materials in combination with factors that will affect its further development and potential industrial application.

[1]  A. Dufresne Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals , 2003 .

[2]  J. H. Han,et al.  WETTING PROPERTIES AND WATER VAPOR PERMEABILITY OF WHEY-PROTEIN-COATED PAPER , 1999 .

[3]  Ivana Murković Steinberg,et al.  Wireless smart tag with potentiometric input for ultra low-power chemical sensing , 2013 .

[4]  S. Nutt,et al.  A Thermally Re-mendable Cross-Linked Polymeric Material , 2002, Science.

[5]  S. Varghese,et al.  Role of Hydrophobicity on Structure of Polymer−Metal Complexes , 2001 .

[6]  N. Bârsan,et al.  Making environmental sensors on plastic foil , 2011 .

[7]  S.-Y. Lin,et al.  Plasticizer effect on grease barrier and color properties of whey-protein coatings on paperboard , 2003 .

[8]  H. Yano,et al.  Cellulose nanofiber-reinforced polylactic acid , 2008 .

[9]  Hsiao-Cheng Yu,et al.  Challenges to Global RFID Adoption , 2006, 2006 Technology Management for the Global Future - PICMET 2006 Conference.

[10]  R. Brown,et al.  Microbial cellulose--the natural power to heal wounds. , 2006, Biomaterials.

[11]  G. Sèbe,et al.  Fat resistance properties of chitosan-based paper packaging for food applications , 2005 .

[12]  Theodore P. Labuza,et al.  APPLICATIONS OF “ACTIVE PACKAGING” FOR IMPROVEMENT OF SHELF‐LIFE AND NUTRITIONAL QUALITY OF FRESH AND EXTENDED SHELF‐LIFE FOODS , 1989 .

[13]  J. Krochta,et al.  Grease and oxygen barrier properties of whey-protein-isolate coated paperboard , 2001 .

[14]  M. Vignon,et al.  Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR , 1999 .

[15]  A. Dufresne,et al.  Improvement of Starch Film Performances Using Cellulose Microfibrils , 1998 .

[16]  Maya Jacob John,et al.  Biofibres and Biocomposites , 2008 .

[17]  Gunnar Henriksson,et al.  An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers , 2007 .

[18]  D. Hon Cellulose: a random walk along its historical path , 1994 .

[19]  Marielle Henriksson,et al.  Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.

[20]  S. Grelier,et al.  Water and moisture susceptibility of chitosan and paper-based materials: structure-property relationships. , 2007, Journal of agricultural and food chemistry.

[21]  D. Gray,et al.  Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose , 1998 .

[22]  Frédéric Debeaufort,et al.  Factors Affecting the Moisture Permeability of Lipid-Based Edible Films: A Review , 2002, Critical reviews in food science and nutrition.

[23]  J. Hamilton,et al.  Microfibrillated cellulose: morphology and accessibility , 1983 .

[24]  A. C. V. Coelho,et al.  Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties , 2013 .

[25]  A. Dufresne,et al.  Transcrystallization in Mcl-PHAs/Cellulose Whiskers Composites , 1999 .

[26]  Naoki Takano,et al.  Intelligent Material Systems Using Epoxy Particles to Repair Microcracks and Delamination Damage in GFRP , 1999 .

[27]  G. Glenn,et al.  Properties of starch-based foam formed by compression/explosion processing , 2001 .

[28]  J. Maran,et al.  Development of model for barrier and optical properties of tapioca starch based edible films. , 2013, Carbohydrate polymers.

[29]  J. Rhim,et al.  Increase in water resistance of paperboard by coating with poly(lactide) , 2007 .

[30]  D. Wu,et al.  Self-healing polymeric materials: A review of recent developments , 2008 .

[31]  S. Burt,et al.  Essential oils: their antibacterial properties and potential applications in foods--a review. , 2004, International journal of food microbiology.

[32]  K. R. Sandberg,et al.  Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential , 1983 .

[33]  Francisco Javier Navas,et al.  Influence of RFID tags on recyclability of plastic packaging. , 2011, Waste management.

[34]  N. Aliheidari,et al.  Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. , 2013, Carbohydrate polymers.

[35]  Alain Dufresne,et al.  Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch , 2009 .

[36]  E. Fortunati,et al.  Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers , 2013 .

[37]  G. Glenn,et al.  In situ laminating process for baked starch-based foams , 2001 .

[38]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[39]  E. Espuche,et al.  Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties , 2011 .

[40]  Nathalie Gontard,et al.  Effect of concentration and relative humidity on the transfer of alkan-2-ones through paper coated with wheat gluten. , 2007, Journal of agricultural and food chemistry.

[41]  Henrik Kjellgren,et al.  Barrier and Surface Properties of Chitosan-Coated Greaseproof Paper , 2006 .

[42]  J. Desbrières,et al.  Physical properties of acetylated starch-based materials: Relation with their molecular characteristics , 1996 .

[43]  Erol Özçelik,et al.  Reducing the spatial distance between printed and online information sources by means of mobile technology enhances learning: Using 2D barcodes , 2011, Comput. Educ..

[44]  K. S. Miller,et al.  Oxygen and aroma barrier properties of edible films: A review , 1997 .

[45]  Qingjie Sun,et al.  Mechanical, barrier and morphological properties of pea starch and peanut protein isolate blend films. , 2013, Carbohydrate polymers.

[46]  G. Glenn,et al.  Properties of baked starch foam with natural rubber latex , 2006 .

[47]  Ralph Müller,et al.  Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. , 2013, Journal of the mechanical behavior of biomedical materials.

[48]  A. Manzoli,et al.  Cellulose nanofibers from white and naturally colored cotton fibers , 2010 .

[49]  Min Jung Kim,et al.  Application of fuzzy reasoning to prediction of beef sirloin quality using time temperature integrators (TTIs) , 2012 .

[50]  A. Dufresne,et al.  Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites , 2008 .

[51]  A. Dufresne,et al.  Physico-Chemical Characterization of Palm from Phoenix Dactylifera-L, Preparation of Cellulose Whiskers and Natural Rubber-Based Nanocomposites , 2009 .

[52]  D. Peressini,et al.  Influence of emulsifier type and content on functional properties of polysaccharide lipid-based edible films. , 2004, Journal of agricultural and food chemistry.

[53]  Véronique Favier,et al.  Nanocomposite materials from latex and cellulose whiskers , 1995 .

[54]  E. Fortunati,et al.  Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. , 2012, Carbohydrate polymers.

[55]  Lars Järnström,et al.  Preparation and incorporation of microcapsules in functional coatings for self‐healing of packaging board , 2009 .

[56]  P. Supaphol,et al.  Characterization of starch/poly(ε-caprolactone) hybrid foams , 2004 .

[57]  F. Menegalli,et al.  Water vapor barrier and mechanical properties of starch films containing stearic acid , 2013 .

[58]  Keehyuk Kim,et al.  New enzymatic time–temperature integrator (TTI) that uses laccase , 2012 .

[59]  A. N. Nakagaito,et al.  Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process , 2009 .

[60]  J. Rhim,et al.  Bio-Nanocomposites for Food Packaging Applications , 2013, Encyclopedia of Renewable and Sustainable Materials.

[61]  Takashi Taniguchi,et al.  New films produced from microfibrillated natural fibres , 1998 .

[62]  E. Arab-Tehrany,et al.  Biopolymer Coatings on Paper Packaging Materials. , 2010, Comprehensive reviews in food science and food safety.

[63]  F. Debeaufort,et al.  Lipid hydrophobicity, physical state and distribution effects on the properties of emulsion-based edible films , 2000 .

[64]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[65]  S. Grelier,et al.  Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material. , 2010, Biomacromolecules.

[66]  Y. Grohens,et al.  A study of morphological, thermal, rheological and barrier properties of Poly(3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing , 2013 .

[67]  Lina Zhang,et al.  Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers , 2009 .

[68]  Kristin Syverud,et al.  Strength and barrier properties of MFC films , 2009 .

[69]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[70]  N. Botsoglou,et al.  The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage. , 2008, Food microbiology.

[71]  A. Chiralt,et al.  Effects of chitosan on the physicochemical and antimicrobial properties of PLA films , 2013 .

[72]  R. Ahvenainen,et al.  Chitosan‐coated paper: Effects of nisin and different acids on the antimicrobial activity , 2004 .

[73]  I. Savvaidis,et al.  Combined effect of vacuum-packaging and oregano essential oil on the shelf-life of Mediterranean octopus (Octopus vulgaris) from the Aegean Sea stored at 4 degrees C. , 2009, Food microbiology.

[74]  B. Z. Jang,et al.  The response of fibrous composites to impact loading , 1990 .

[75]  Shengmin Zhang,et al.  Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. , 2013, Materials science & engineering. C, Materials for biological applications.

[76]  Andrea Scorzoni,et al.  Flexible tag microlab development: Gas sensors integration in RFID flexible tags for food logistic , 2007 .

[77]  G. Chinga-Carrasco,et al.  Structure of nanofibrillated cellulose layers at the o/w interface. , 2011, Journal of colloid and interface science.

[78]  L. H. Dall’Antonia,et al.  Properties of baked foams based on cassava starch, sugarcane bagasse fibers and montmorillonite , 2012 .

[79]  N. Sottos,et al.  Autonomic healing of polymer composites , 2001, Nature.

[80]  L. Rigal,et al.  Influence of citric acid on thermoplastic wheat flour/poly (lactic acid) blends. II. Barrier properties and water vapor sorption isotherms , 2013 .

[81]  P. Chang,et al.  Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time , 2009 .

[82]  Paul Tobback,et al.  Active and intelligent food packaging: legal aspects and safety concerns , 2008 .

[83]  S. H. Ho,et al.  Modelling of the thermal response of a multi-tray food self-heating unit , 2010 .

[84]  M. L Rooney,et al.  Active Food Packaging , 1995 .

[85]  R. Shogren,et al.  Baked starch foams: starch modifications and additives improve process parameters, structure and properties , 2002 .

[86]  H. Park,et al.  Grease resistance and mechanical properties of isolated soy protein-coated paper , 2000 .

[87]  May Tajima Strategic value of RFID in supply chain management , 2007 .

[88]  Y. Grohens,et al.  Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study , 2012 .

[89]  Nitaigour P. Mahalik,et al.  Trends in food packaging and manufacturing systems and technology , 2010 .

[90]  Takeshi Okano,et al.  Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose , 1998 .

[91]  M. S. Aday,et al.  The shelf life extension of fresh strawberries using an oxygen absorber in the biobased package , 2013 .

[92]  Masaya Nogi,et al.  Optically Transparent Nanofiber Paper , 2009 .

[93]  Nathalie Gontard,et al.  Microstructure of protein-coated paper as affected by physico-chemical properties of coating solutions , 2007 .

[94]  C. Andersson New ways to enhance the functionality of paperboard by surface treatment – a review , 2008 .

[95]  N. Kotov,et al.  Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. , 2005, Biomacromolecules.

[96]  Kristin Syverud,et al.  The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper , 2008 .

[97]  L. Drzal,et al.  PREPARATION AND PROPERTIES OF MICROFIBRILLATED CELLULOSE POLYVINYL ALCOHOL COMPOSITE MATERIALS , 2008 .

[98]  S. Luidold,et al.  RFID-Reststoff-Anfall und Recyclingpotenziale der Metallanteile , 2012, BHM Berg- und Hüttenmännische Monatshefte.

[99]  R. Martínez‐Máñez,et al.  A chromogenic sensor array for boiled marinated turkey freshness monitoring , 2014 .

[100]  P. Sobral,et al.  Hygroscopicity and water vapor permeability of Kraft paper impregnated with starch acetate , 2005 .

[101]  T. Trezza,et al.  Grease Resistance of Corn Zein Coated Paper , 1994 .

[102]  T. Trezza,et al.  Water vapor and oxygen barrier properties of corn zein coated paper , 1998 .

[103]  Min Jung Kim,et al.  Selection of an optimum pH-indicator for developing lactic acid bacteria-based time–temperature integrators (TTI) , 2012 .

[104]  A. Guinault,et al.  Influence of crystallinity on gas barrier and mechanical properties of pla food packaging films , 2010 .

[105]  C. Mikail,et al.  Étude de six huiles essentielles : composition chimique et activité antibactérienne , 2008, Phytothérapie.

[106]  Gian Carlo Cardinali,et al.  Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications , 2008 .

[107]  D. Gray,et al.  Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy , 1992 .

[108]  A. Albertsson,et al.  Barrier and mechanical properties of pulp fiber/polymer laminates and blends , 2000 .

[109]  Wim Thielemans,et al.  Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites , 2006 .

[110]  Gaël Colomines,et al.  Influences of the crystallisation rate on thermal and barrier properties of polylactide acid (PLA) food packaging films , 2008 .

[111]  Nathalie Gontard,et al.  Wheat gluten-coated papers for bio-based food packaging: Structure, surface and transfer properties , 2010 .

[112]  R. Potyrailo,et al.  A Passive Radio-Frequency Identification (RFID) Gas Sensor With Self-Correction Against Fluctuations of Ambient Temperature. , 2013, Sensors and actuators. B, Chemical.

[113]  J. Rhim,et al.  Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films , 2009 .

[114]  P. Chang,et al.  Effects of polymer‐grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): A case of cellulose whisker‐graft‐polycaprolactone , 2009 .

[115]  P. Supaphol,et al.  Preparation and characterization of starch/poly(L-lactic acid) hybrid foams , 2005 .

[116]  Andrea Scorzoni,et al.  Ultra-low-power components for an RFID Tag with physical and chemical sensors , 2008 .

[117]  C. Barry‐Ryan,et al.  Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components. , 2009, Food microbiology.

[118]  J. Kerry,et al.  Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. , 2006, Meat science.

[119]  R. Shogren,et al.  Aspen fiber addition improves the mechanical properties of baked cornstarch foams , 2004 .

[120]  Sanghoon Ko,et al.  Proof-of-concept study of chitosan-based carbon dioxide indicator for food packaging applications. , 2012, Food chemistry.

[121]  J. Ndjaka,et al.  Tensile and water barrier properties of cassava starch composite films reinforced by synthetic zeolite and beidellite , 2013 .

[122]  T. Franco,et al.  Chitosan biobased and intelligent films: Monitoring pH variations , 2014 .

[123]  A. Dufresne,et al.  A review of cellulose nanocrystals and nanocomposites , 2011 .

[124]  Lina Zhang,et al.  Effects of cellulose whiskers on properties of soy protein thermoplastics. , 2006, Macromolecular bioscience.

[125]  J. Krochta,et al.  Physical Properties and Oil Absorption of Whey‐Protein‐Coated Paper , 2001 .

[126]  Angappa Gunasekaran,et al.  Supply chain product visibility: Methods, systems and impacts , 2014, Expert Syst. Appl..

[127]  Chahattuche Wanihsuksombat,et al.  Development and characterization of a prototype of a lactic acid―based time―temperature indicator for monitoring food product quality , 2010 .

[128]  P. Nielsen,et al.  Potential of biobased materials for food packaging , 1999 .

[129]  Carolyn M. Dry PASSIVE TUNEABLE FIBERS AND MATRICES , 1992 .

[130]  Michael Laurence Rooney,et al.  Introduction to active food packaging technologies , 2005 .

[131]  F. Dusan,et al.  Essential oils--their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. , 2006 .

[132]  W. Winter,et al.  Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals , 2002 .

[133]  P. Stenius,et al.  Water‐in‐oil Emulsions Stabilized by Hydrophobized Microfibrillated Cellulose , 2007 .

[134]  M. Hedenqvist,et al.  Packaging‐related properties of protein‐ and chitosan‐coated paper , 2005 .

[135]  J. Revol On the cross-sectional shape of cellulose crystallites in Valonia ventricosa , 1982 .

[136]  Eero Hurme,et al.  Myoglobin-based indicators for the evaluation of freshness of unmarinated broiler cuts , 2002 .

[137]  Ajit K. Mal,et al.  New Thermally Remendable Highly Cross-Linked Polymeric Materials , 2003 .

[138]  Diana Gregor Svetec,et al.  Renewable fibers and bio-based materials for packaging applications - A review of recent developments , 2012 .

[139]  Thomas Geiger,et al.  Cellulose Fibrils for Polymer Reinforcement , 2004 .

[140]  Amparo López-Rubio,et al.  Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications , 2010 .

[141]  P. V. Bartels,et al.  A non-destructive ammonium detection method as indicator for freshness for packed fish: Application on cod , 2012 .

[142]  Takeshi Okano,et al.  Birefringent Glassy Phase of a Cellulose Microcrystal Suspension , 2000 .

[143]  J. Rhim,et al.  Water resistance and mechanical properties of biopolymer (alginate and soy protein) coated paperboards , 2006 .

[144]  A. Mauri,et al.  Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process , 2008 .

[145]  F. Debeaufort Lipid hydrophobicity and physical state effects on the properties of bilayer edible films , 2000 .

[146]  Valentina Siracusa,et al.  Biodegradable polymers for food packaging: a review , 2008 .

[147]  J. G. Williams,et al.  Fracture mechanics studies of crack healing and welding of polymers , 1981 .

[148]  Carolyn M. Dry,et al.  Procedures developed for self-repair of polymer matrix composite materials , 1996 .

[149]  Masayuki Yamaguchi,et al.  Self-repairing property of polymer network with dangling chains , 2007 .