Equivalent Single-Layer and Layerwise Shell Theories and Rigid-Body Motions—Part I: Foundations

Abstract The exact representation of rigid-body motions in the displacement patterns of the first-order equivalent single-layer (ESL) and layerwise (LW) shell elements is considered. This consideration requires the development of the strain–displacement relationships of the ESL and LW shell theories with regard to their consistency with rigid-body motions. The fundamental unknowns consist of six displacements of the face surfaces of the shell in the ESL theory and 3(N + 1) displacements of the face surfaces of layers in the LW shell theory, where N is a number of layers. Such a choice of displacements makes it possible to deduce strain–displacement relationships, which are objective, that is, invariant under rigid-body motions. To overcome thickness locking, three types of the modified material stiffness matrix corresponding to the generalized plane-stress state are employed.

[1]  K. Y. Sze,et al.  Three‐dimensional continuum finite element models for plate/shell analysis , 2002 .

[2]  A. L. Goldenveizer THEORY OF ELASTIC THIN SHELLS , 1962 .

[3]  S. Lee,et al.  An eighteen‐node solid element for thin shell analysis , 1988 .

[4]  K. Y. Sze,et al.  An eight‐node hybrid‐stress solid‐shell element for geometric non‐linear analysis of elastic shells , 2002 .

[5]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[6]  G. Kulikov,et al.  Investigation of Locally Loaded Multilayer Shells by a Mixed Finite-Element Method. 2. Geometrically Nonlinear Statement , 2002 .

[7]  Theodore H. H. Pian,et al.  Finite elements based on consistently assumed stresses and displacements , 1985 .

[8]  D. Dawe Rigid-body motions and strain-displacement equations of curved shell finite elements , 1972 .

[9]  Gennady M. Kulikov,et al.  Efficient mixed Timoshenko–Mindlin shell elements , 2002 .

[10]  Gennady M. Kulikov,et al.  Non-linear analysis of multilayered shells under initial stress , 2001 .

[11]  E. Ramm,et al.  On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation , 2000 .

[12]  E. Carrera Theories and finite elements for multilayered, anisotropic, composite plates and shells , 2002 .

[13]  A. Noor,et al.  Assessment of Computational Models for Multilayered Composite Shells , 1990 .

[14]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[15]  Gennady M. Kulikov,et al.  Equivalent Single-Layer and Layerwise Shell Theories and Rigid-Body Motions—Part II: Computational Aspects , 2005 .

[16]  ON THE USE OF 6-PARAMETER MULTILAYERED SHELL MODELS IN STRUCTURAL MECHANICS , 2004 .

[17]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[18]  Gennady M. Kulikov,et al.  Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I Timoshenko-Mindlin shell theory , 2003 .

[19]  Chahngmin Cho,et al.  An efficient assumed strain element model with six DOF per node for geometrically non‐linear shells , 1995 .

[20]  Gennady M. Kulikov,et al.  General direction of development of the theory of multilayered shells , 1988 .

[21]  鷲津 久一郎 Variational methods in elasticity and plasticity , 1982 .

[22]  Ekkehard Ramm,et al.  Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates , 1994 .

[23]  Gennady M. Kulikov,et al.  Simple and effective elements based upon Timoshenko–Mindlin shell theory , 2002 .

[24]  K. Y. Sze,et al.  An Explicit Hybrid Stabilized Eighteen-Node Solid Element for Thin Shell Analysis , 1997 .

[25]  G. Kulikov Analysis of initially stressed multilayered shells , 2001 .

[26]  Maenghyo Cho,et al.  Development of geometrically exact new shell elements based on general curvilinear co‐ordinates , 2003 .

[27]  G. Cantin,et al.  Strain displacement relationships for cylindrical shells. , 1968 .