A computationally efficient limited memory CMA-ES for large scale optimization
暂无分享,去创建一个
[1] James N. Knight,et al. Reducing the space-time complexity of the CMA-ES , 2007, GECCO '07.
[2] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[3] J. Nocedal. Updating Quasi-Newton Matrices With Limited Storage , 1980 .
[4] Anne Auger,et al. A median success rule for non-elitist evolution strategies: study of feasibility , 2013, GECCO '13.
[5] Anne Auger,et al. Benchmarking the local metamodel CMA-ES on the noiseless BBOB'2013 test bed , 2013, GECCO.
[6] Anne Auger,et al. BBOB 2009: Comparison Tables of All Algorithms on All Noiseless Functions , 2010 .
[7] Raymond Ros,et al. A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity , 2008, PPSN.
[8] Raymond Ros,et al. Benchmarking a weighted negative covariance matrix update on the BBOB-2010 noiseless testbed , 2010, GECCO '10.
[9] Dirk V. Arnold,et al. Improving Evolution Strategies through Active Covariance Matrix Adaptation , 2006, 2006 IEEE International Conference on Evolutionary Computation.
[10] Stefan Roth,et al. Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.
[11] Tom Schaul,et al. A linear time natural evolution strategy for non-separable functions , 2011, GECCO.
[12] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..
[13] Xin Yao,et al. Fast Evolution Strategies , 1997, Evolutionary Programming.
[14] Michèle Sebag,et al. Bi-population CMA-ES agorithms with surrogate models and line searches , 2013, GECCO.
[15] Nikolaus Hansen,et al. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[16] Christian Igel,et al. Efficient covariance matrix update for variable metric evolution strategies , 2009, Machine Learning.
[17] Petros Koumoutsakos,et al. A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.
[18] M. Brand,et al. Fast low-rank modifications of the thin singular value decomposition , 2006 .
[19] Petros Koumoutsakos,et al. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.
[20] Michèle Sebag,et al. Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy , 2012, GECCO '12.
[21] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[22] Anne Auger,et al. Evolution Strategies , 2018, Handbook of Computational Intelligence.
[23] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[24] W. Vent,et al. Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .
[25] Ilya Loshchilov,et al. CMA-ES with restarts for solving CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.
[26] Francisco Herrera,et al. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.