A computationally efficient limited memory CMA-ES for large scale optimization

We propose a computationally efficient limited memory Covariance Matrix Adaptation Evolution Strategy for large scale optimization, which we call the LM-CMA-ES. The LM-CMA-ES is a stochastic, derivative-free algorithm for numerical optimization of non-linear, non-convex optimization problems in continuous domain. Inspired by the limited memory BFGS method of Liu and Nocedal (1989), the LM-CMA-ES samples candidate solutions according to a covariance matrix reproduced from m direction vectors selected during the optimization process. The decomposition of the covariance matrix into Cholesky factors allows to reduce the time and memory complexity of the sampling to O(mn), where $n$ is the number of decision variables. When $n$ is large (e.g., n > 1000), even relatively small values of $m$ (e.g., m=20,30) are sufficient to efficiently solve fully non-separable problems and to reduce the overall run-time.

[1]  James N. Knight,et al.  Reducing the space-time complexity of the CMA-ES , 2007, GECCO '07.

[2]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[3]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[4]  Anne Auger,et al.  A median success rule for non-elitist evolution strategies: study of feasibility , 2013, GECCO '13.

[5]  Anne Auger,et al.  Benchmarking the local metamodel CMA-ES on the noiseless BBOB'2013 test bed , 2013, GECCO.

[6]  Anne Auger,et al.  BBOB 2009: Comparison Tables of All Algorithms on All Noiseless Functions , 2010 .

[7]  Raymond Ros,et al.  A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity , 2008, PPSN.

[8]  Raymond Ros,et al.  Benchmarking a weighted negative covariance matrix update on the BBOB-2010 noiseless testbed , 2010, GECCO '10.

[9]  Dirk V. Arnold,et al.  Improving Evolution Strategies through Active Covariance Matrix Adaptation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[10]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[11]  Tom Schaul,et al.  A linear time natural evolution strategy for non-separable functions , 2011, GECCO.

[12]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[13]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[14]  Michèle Sebag,et al.  Bi-population CMA-ES agorithms with surrogate models and line searches , 2013, GECCO.

[15]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[16]  Christian Igel,et al.  Efficient covariance matrix update for variable metric evolution strategies , 2009, Machine Learning.

[17]  Petros Koumoutsakos,et al.  A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.

[18]  M. Brand,et al.  Fast low-rank modifications of the thin singular value decomposition , 2006 .

[19]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[20]  Michèle Sebag,et al.  Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy , 2012, GECCO '12.

[21]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[22]  Anne Auger,et al.  Evolution Strategies , 2018, Handbook of Computational Intelligence.

[23]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[24]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[25]  Ilya Loshchilov,et al.  CMA-ES with restarts for solving CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[26]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.