Prediction of Oil Prices Using Bagging and Random Subspace

[1]  Ajith Abraham,et al.  Oil price prediction using ensemble machine learning , 2013, 2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE).

[2]  Abdolreza Mirzaei,et al.  A hierarchical clusterer ensemble method based on boosting theory , 2013, Knowl. Based Syst..

[3]  W. N. H. W. Mohamed,et al.  A comparative study of Reduced Error Pruning method in decision tree algorithms , 2012, 2012 IEEE International Conference on Control System, Computing and Engineering.

[4]  Shahab Araghinejad,et al.  Application of artificial neural network ensembles in probabilistic hydrological forecasting , 2011 .

[5]  Fengyun Wang,et al.  Notice of RetractionAnalysis on impact factors of oil price fluctuation in China , 2011, 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC).

[6]  Albert Y. Zomaya,et al.  A Review of Ensemble Methods in Bioinformatics , 2010, Current Bioinformatics.

[7]  A. Alizadeh,et al.  Monthly Brent oil price forecasting using artificial neural networks and a crisis index , 2010, 2010 International Conference on Electronics and Information Engineering.

[8]  Ramazan Sarı,et al.  World oil prices, precious metal prices and macroeconomy in Turkey , 2009 .

[9]  Rania Jammazi,et al.  The effects of crude oil shocks on stock market shifts behaviour: A regime switching approach , 2009 .

[10]  Heping Pan,et al.  Daily prediction of short-term trends of crude oil prices using neural networks exploiting multimarket dynamics , 2009, Frontiers of Computer Science in China.

[11]  Lin Ma,et al.  Empirical analysis of support vector machine ensemble classifiers , 2009, Expert Syst. Appl..

[12]  Lean Yu,et al.  A New Method for Crude Oil Price Forecasting Based on Support Vector Machines , 2006, International Conference on Computational Science.

[13]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[14]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[15]  Eric Bauer,et al.  An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants , 1999, Machine Learning.

[16]  H. Bourlard,et al.  Auto-association by multilayer perceptrons and singular value decomposition , 1988, Biological Cybernetics.

[17]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[18]  Alexey Tsymbal,et al.  Ensemble feature selection with the simple Bayesian classification , 2003, Inf. Fusion.

[19]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[20]  Mark A. Hall,et al.  Correlation-based Feature Selection for Machine Learning , 2003 .

[21]  Xuejing Sun,et al.  Pitch accent prediction using ensemble machine learning , 2002, INTERSPEECH.

[22]  Claudio Morana,et al.  A semiparametric approach to short-term oil price forecasting , 2001 .

[23]  R. Pindyck The Dynamics of Commodity Spot and Futures Markets: A Primer , 2001 .

[24]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Marko Robnik-Sikonja,et al.  An adaptation of Relief for attribute estimation in regression , 1997, ICML.

[26]  Bruce Abramson,et al.  Probabilistic forecasts from probabilistic models: A case study in the oil market , 1995 .

[27]  J. M. Griffin,et al.  OPEC Behavior: A Test of Alternative Hypotheses , 1985 .