Consistent Probabilistic Social Choice

Two fundamental axioms in social choice theory are consistency with respect to a variable electorate and consistency with respect to components of similar alternatives. In the context of traditional non-probabilistic social choice, these axioms are incompatible with each other. We show that in the context of probabilistic social choice, these axioms uniquely characterize a function proposed by Fishburn (Rev. Econ. Stud., 51(4), 683--692, 1984). Fishburn's function returns so-called maximal lotteries, i.e., lotteries that correspond to optimal mixed strategies of the underlying plurality game. Maximal lotteries are guaranteed to exist due to von Neumann's Minimax Theorem, are almost always unique, and can be efficiently computed using linear programming.

[1]  A. Sen,et al.  Social Choice Theory , 1980 .

[2]  P. Fishburn The Theory Of Social Choice , 1973 .

[3]  R. Möhring Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions , 1985 .

[4]  H. Young Social Choice Scoring Functions , 1975 .

[5]  William S. Zwicker The voters' paradox, spin, and the Borda count , 1991 .

[6]  Telikepalli Kavitha,et al.  Popular mixed matchings , 2009, Theor. Comput. Sci..

[7]  Bezalel Peleg,et al.  Distribution of Power under Stochastic Social Choice Rules , 1986 .

[8]  J. H. Smith AGGREGATION OF PREFERENCES WITH VARIABLE ELECTORATE , 1973 .

[9]  Eric Maskin Decision-Making Under Ignorance with Implications for Social Choice , 1979 .

[10]  H. Peyton Young,et al.  Equity - in theory and practice , 1994 .

[11]  H. Chernoff Rational Selection of Decision Functions , 1954 .

[12]  T. Tideman,et al.  Complete independence of clones in the ranked pairs rule , 1989 .

[13]  Robert Sugden,et al.  Condorcet: Foundations of Social Choice and Political Theory , 1994 .

[14]  Kenneth O. May,et al.  A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision , 1952 .

[15]  Felix Brandt,et al.  On Popular Random Assignments , 2013, SAGT.

[16]  H. P. Young,et al.  An axiomatization of Borda's rule , 1974 .

[17]  Arunava Sen,et al.  Random dictatorship domains , 2012, Games Econ. Behav..

[18]  D. G. Saari,et al.  Consistency of decision processes , 1990 .

[19]  Jean-François Laslier,et al.  Rank-based choice correspondences , 1996 .

[20]  Bhaskar Dutta,et al.  Comparison functions and choice correspondences , 1999 .

[21]  S. Tijs,et al.  The consistency principle for games in strategic form , 1996 .

[22]  Peter Stone,et al.  The Luck of the Draw , 2011 .

[23]  Sean M. Horan,et al.  Implementation of Majority Voting Rules , 2013 .

[24]  J. Harsanyi Games with randomly disturbed payoffs: A new rationale for mixed-strategy equilibrium points , 1973 .

[25]  Michel Balinski,et al.  Stability, Coalitions and Schisms in Proportional Representation Systems , 1978, American Political Science Review.

[26]  Hervé Moulin,et al.  A New Solution to the Random Assignment Problem , 2001, J. Econ. Theory.

[27]  Peter C. Fishburn,et al.  Towards a Theory of Elections with Probabilistic Preferences , 1977 .

[28]  Peter C. Fishburn,et al.  Axioms for approval voting: Direct proof , 1978 .

[29]  Richard J. Zeckhauser,et al.  Majority Rule with Lotteries on Alternatives , 1969 .

[30]  Richard Stong,et al.  Collective choice under dichotomous preferences , 2005, J. Econ. Theory.

[31]  Felix Brandt,et al.  Minimal stable sets in tournaments , 2008, J. Econ. Theory.

[32]  Atila Abdulkadiroglu,et al.  RANDOM SERIAL DICTATORSHIP AND THE CORE FROM RANDOM ENDOWMENTS IN HOUSE ALLOCATION PROBLEMS , 1998 .

[33]  P. Fishburn Nontransitive measurable utility , 1982 .

[34]  A. Gibbard Manipulation of Schemes That Mix Voting with Chance , 1977 .

[35]  Jean-François Laslier,et al.  Aggregation of preferences with a variable set of alternatives , 2000, Soc. Choice Welf..

[36]  Michael D. Intriligator,et al.  A Probabilistic Model of Social Choice , 1973 .

[37]  H. Young Condorcet's Theory of Voting , 1988, American Political Science Review.

[38]  Yeon-Koo Che,et al.  Asymptotic Equivalence of Probabilistic Serial and Random Priority Mechanisms , 2008 .

[39]  E. Maskin,et al.  On the Robustness of Majority Rule , 2008 .

[40]  James Wycliffe Headlam,et al.  Election By Lot At Athens , 2022 .

[41]  J. Nash THE BARGAINING PROBLEM , 1950, Classics in Game Theory.

[42]  Salvador Barberà,et al.  Majority and Positional Voting in a Probabilistic Framework , 1979 .

[43]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[44]  Lawrence G. Sager Handbook of Computational Social Choice , 2015 .

[45]  Michel Le Breton,et al.  On the Uniqueness of Equilibrium in Symmetric Two-Player Zero-Sum Games with Integer Payoffs , 2007 .

[46]  Felix Brandt,et al.  On the Fixed-Parameter Tractability of Composition-Consistent Tournament Solutions , 2011, IJCAI.

[47]  T. Tideman,et al.  Independence of clones as a criterion for voting rules , 1987 .

[48]  Bernard Monjardet Statement of precedence and a comment on IIA terminology , 2008, Games Econ. Behav..

[49]  H. F. Bohnenblust,et al.  Solutions of Discrete, Two-Person Games , 1949 .

[50]  David C. Mcgarvey A THEOREMI ON THE CONSTRUCTION OF VOTING PARADOXES , 1953 .

[51]  Donald E. Campbell,et al.  Impossibility theorems in the arrovian framework , 2002 .

[52]  Kotaro Suzumura,et al.  Impossibility theorems without collective rationality , 1976 .

[53]  Donald G. Saari,et al.  The Borda dictionary , 1990 .

[54]  Peter C. Fishburn,et al.  Lotteries and social choices , 1972 .

[55]  H. P. Young,et al.  A Note on Preference Aggregation , 1974 .

[56]  Felix Brandt,et al.  On the tradeoff between economic efficiency and strategy proofness in randomized social choice , 2013, AAMAS.

[57]  H. Moulin Choosing from a tournament , 1986 .

[58]  Thomas Schwartz Choice functions, “rationality” conditions, and variations on the weak axiom of revealed preference , 1976 .

[59]  Terje Lensberg,et al.  Stability and the Nash solution , 1988 .

[60]  W. Thomson Consistent Allocation Rules , 1996 .

[61]  H. Young,et al.  A Consistent Extension of Condorcet’s Election Principle , 1978 .

[62]  F. Brandt,et al.  Computational Social Choice: Prospects and Challenges , 2011, FET.

[63]  M. Breton,et al.  The Bipartisan Set of a Tournament Game , 1993 .

[64]  R. Rivest,et al.  An Optimal Single-Winner Preferential Voting System Based on Game Theory , 2010 .

[65]  Felix Brandt,et al.  Universal Pareto dominance and welfare for plausible utility functions , 2015 .

[66]  P. Fishburn Probabilistic Social Choice Based on Simple Voting Comparisons , 1984 .

[67]  A. A. J. Marley,et al.  Behavioral Social Choice - Probabilistic Models, Statistical Inference, and Applications , 2006 .

[68]  K. Fine,et al.  Social Choice and Individual Rankings II , 1974 .

[69]  A. Sen,et al.  Social Choice Theory: A Re-Examination , 1977 .

[70]  Roger B. Myerson,et al.  Axiomatic derivation of scoring rules without the ordering assumption , 1993 .

[71]  Ariel Rubinstein,et al.  A further characterization of Borda ranking method , 1981 .

[72]  Jean-François Laslier,et al.  Tournament Solutions And Majority Voting , 1997 .

[73]  John Burnheim,et al.  Justice by Lottery , 1993 .

[74]  Ben Saunders,et al.  Democracy, Political Equality, and Majority Rule* , 2010, Ethics.

[75]  Felix Brandt,et al.  On the Discriminative Power of Tournament Solutions , 2014, OR.

[76]  Eric Budish,et al.  The Multi-Unit Assignment Problem: Theory and Evidence from Course Allocation at Harvard , 2010 .

[77]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[78]  Paul R. Milgrom,et al.  Designing Random Allocation Mechanisms: Theory and Applications , 2013 .

[79]  A. Sen,et al.  Choice Functions and Revealed Preference , 1971 .

[80]  H. Young Optimal Voting Rules , 1995 .

[81]  Dan S. Felsenthal,et al.  After two centuries, should condorcet's voting procedure be implemented? , 1992 .

[82]  Jean-François Laslier,et al.  Composition-consistent tournament solutions and social choice functions , 1996 .

[83]  Felix Brandt,et al.  Set-rationalizable choice and self-stability , 2009, J. Econ. Theory.

[84]  Felix Brandt,et al.  On the Incompatibility of Efficiency and Strategyproofness in Randomized Social Choice , 2014, AAAI.

[85]  Jennifer Ryan,et al.  Tournament games and positive tournaments , 1995, J. Graph Theory.

[86]  Arthur Cayley The Collected Mathematical Papers: Sur les Déterminants Gauches , 2009 .

[87]  G. Thompson,et al.  The Theory of Committees and Elections. , 1959 .

[88]  Philip A. Schrodt,et al.  The Logic of Collective Choice. , 1986 .

[89]  J. Harsanyi Oddness of the number of equilibrium points: A new proof , 1973 .

[90]  Jean-François Laslier,et al.  In Silico Voting Experiments , 2010 .

[91]  D. Saari Basic Geometry of Voting , 1995 .

[92]  H. Moulin,et al.  Random Matching under Dichotomous Preferences , 2004 .

[93]  S. Hart,et al.  Potential, value, and consistency , 1989 .

[94]  Vincent Merlin,et al.  A characterization of the maximin rule in the context of voting , 2012 .