A Tale of Two Type Ia Supernovae: The Fast-declining Siblings SNe 2015bo and 1997cn

We present optical and near-infrared photometric and spectroscopic observations of the fast-declining Type Ia supernova (SN) 2015bo. SN 2015bo is underluminous (M B = −17.50 ± 0.15 mag) and has a fast-evolving light curve (Δm15(B) = 1.91 ± 0.01 mag and s BV = 0.48 ± 0.01). It has a unique morphology in the observed V − r color curve, where it is bluer than all other supernovae (SNe) in the comparison sample. A 56Ni mass of 0.17 ± 0.03 M ⊙ was derived from the peak bolometric luminosity, which is consistent with its location on the luminosity–width relation. Spectroscopically, SN 2015bo is a cool SN in the Branch classification scheme. The velocity evolution measured from spectral features is consistent with 1991bg-like SNe. SN 2015bo has a SN twin (similar spectra) and sibling (same host galaxy), SN 1997cn. Distance moduli of μ = 34.33 ± 0.01 (stat) ±0.11 (sys) mag and μ = 34.34 ± 0.04 (stat) ± 0.12 (sys) mag are derived for SN 2015bo and SN 1997cn, respectively. These distances are consistent at the 0.06σ level with each other, and they are also consistent with distances derived using surface-brightness fluctuations and redshift-corrected cosmology. This suggests that fast-declining SNe could be accurate distance indicators, which should not be excluded from future cosmological analyses.

[1]  S. E. Persson,et al.  ASASSN-15hy: An Underluminous, Red 03fg-like Type Ia Supernova , 2021, 2107.08150.

[2]  S. E. Persson,et al.  Carnegie Supernova Project: The First Homogeneous Sample of Super-Chandrasekhar-mass/2003fg-like Type Ia Supernovae , 2021, The Astrophysical Journal.

[3]  S. E. Persson,et al.  Strong Near-infrared Carbon Absorption in the Transitional Type Ia SN 2015bp* * This paper includes data gathered with the 6.5 m Magellan Telescope at Las Campanas Observatory, Chile. , 2020, The Astrophysical Journal.

[4]  OUP accepted manuscript , 2021, Monthly Notices of the Royal Astronomical Society.

[5]  J. Hjorth,et al.  A new measurement of the Hubble constant using Type Ia supernovae calibrated with surface brightness fluctuations , 2020, Astronomy & Astrophysics.

[6]  S. E. Persson,et al.  Carnegie Supernova Project II: The Slowest Rising Type Ia Supernova LSQ14fmg and Clues to the Origin of Super-Chandrasekhar/03fg-like Events , 2020, The Astrophysical Journal.

[7]  P. Brown,et al.  SN 2013aa and SN 2017cbv: Two Sibling Type Ia Supernovae in the Spiral Galaxy NGC 5643 , 2020, The Astrophysical Journal.

[8]  M. Stritzinger,et al.  Carnegie Supernova Project-II: A New Method to Photometrically Identify Sub-types of Extreme Type Ia Supernovae , 2020, The Astrophysical Journal.

[9]  J. Prieto,et al.  The AMUSING++ Nearby Galaxy Compilation. I. Full Sample Characterization and Galactic-scale Outflow Selection , 2020, The Astronomical Journal.

[10]  N. E. Sommer,et al.  Supernova Siblings: Assessing the Consistency of Properties of Type Ia Supernovae that Share the Same Parent Galaxies , 2020, The Astrophysical Journal.

[11]  K. Maguire,et al.  Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type Ia supernova 2016hnk , 2019, Astronomy & Astrophysics.

[12]  R. Kirshner,et al.  A Physical Basis for the H-band Blue-edge Velocity and Light-curve Shape Correlation in Context of Type Ia Supernova Explosion Physics , 2019, The Astrophysical Journal.

[13]  R. Kirshner,et al.  Carnegie Supernova Project-II: Using Near-infrared Spectroscopy to Determine the Location of the Outer 56Ni in Type Ia Supernovae , 2019, The Astrophysical Journal.

[14]  P. Brown,et al.  Significant luminosity differences of two twin Type Ia supernovae , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  Jessica R. Lu,et al.  Carnegie Supernova Project-II: The Near-infrared Spectroscopy Program , 2018, Publications of the Astronomical Society of the Pacific.

[16]  S. E. Persson,et al.  Carnegie Supernova Project-II: Extending the Near-infrared Hubble Diagram for Type Ia Supernovae to z ∼ 0.1 , 2018, Publications of the Astronomical Society of the Pacific.

[17]  S. E. Persson,et al.  The Carnegie Supernova Project: Absolute Calibration and the Hubble Constant , 2018, The Astrophysical Journal.

[18]  M. Stritzinger,et al.  Near-infrared Spectral Evolution of the Type Ia Supernova 2014J in the Nebular Phase: Implications for the Progenitor System , 2018, The Astrophysical Journal.

[19]  R. Foley,et al.  On the type Ia supernovae 2007on and 2011iv: evidence for Chandrasekhar-mass explosions at the faint end of the luminosity–width relationship , 2018, 1802.09460.

[20]  E. Pian,et al.  The nebular spectra of the transitional Type Ia Supernovae 2007on and 2011iv: Broad, multiple components indicate aspherical explosion cores , 2018, 1802.09469.

[21]  S. Blondin,et al.  The detonation of a sub-Chandrasekhar-mass white dwarf at the origin of the low-luminosity Type Ia supernova 1999by , 2017, 1711.09107.

[22]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[23]  S. E. Persson,et al.  The Carnegie Supernova Project. I. Third Photometry Data Release of Low-redshift Type Ia Supernovae and Other White Dwarf Explosions , 2017, 1709.05146.

[24]  M. Stritzinger,et al.  Light and Color Curve Properties of Type Ia Supernovae: Theory Versus Observations , 2017, 1707.05350.

[25]  P. Brown,et al.  Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404: SN 2007on and SN 2011iv , 2017, 1707.03823.

[26]  Astrophysics,et al.  The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.

[27]  S. Taubenberger The Extremes of Thermonuclear Supernovae , 2017, 1703.00528.

[28]  E. Pian,et al.  Abundance stratification in Type Ia supernovae - V. SN 1986G bridging the gap between normal and subluminous SNe Ia , 2016, 1608.05244.

[29]  L. Galbany,et al.  Characterizing the environments of supernovae with MUSE , 2015, 1511.01495.

[30]  E. Baron,et al.  Identification of the feature that causes the I-band secondary maximum of a Type Ia supernova , 2015, 1503.03088.

[31]  E. O. Ofek,et al.  Strong near-infrared carbon in the Type Ia supernova iPTF13ebh , 2015, 1503.02293.

[32]  U. Austin,et al.  HUNTING FOR SUPERMASSIVE BLACK HOLES IN NEARBY GALAXIES WITH THE HOBBY–EBERLY TELESCOPE , 2015, 1502.00632.

[33]  S. Blondin,et al.  A one-dimensional Chandrasekhar-mass delayed-detonation model for the broad-lined Type Ia supernova 2002bo , 2015, 1501.06583.

[34]  M. Sullivan,et al.  PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.

[35]  J. Prieto,et al.  Type Ia supernovae with bimodal explosions are common – possible smoking gun for direct collisions of white dwarfs , 2014, 1401.3347.

[36]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[37]  C. Tao,et al.  Measuring cosmic bulk flows with Type Ia supernovae from the Nearby Supernova Factory (Corrigendum) , 2013, 1310.4184.

[38]  B. Shappee,et al.  Greatly enhanced eccentricity oscillations in quadruple systems composed of two binaries: implications for stars, planets and transients , 2013, 1304.3152.

[39]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[40]  E. Gall,et al.  Interpreting the near-infrared spectra of the 'golden standard' Type Ia supernova 2005cf , 2012, 1208.5949.

[41]  J. Prochaska,et al.  An empirical relation between sodium absorption and dust extinction , 2012, 1206.6107.

[42]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[43]  A. Riess,et al.  THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE , 2000, The Astronomical Journal.

[44]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[45]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy , 2010, 1010.4040.

[46]  Kevin Krisciunas,et al.  THE DISTANCE TO NGC 1316 (FORNAX A) FROM OBSERVATIONS OF FOUR TYPE Ia SUPERNOVAE , 2010, 1009.4390.

[47]  M. Loupias,et al.  The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.

[48]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[49]  M. Sullivan,et al.  The dependence of Type Ia Supernovae luminosities on their host galaxies , 2010, 1003.5119.

[50]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[51]  J. Sollerman,et al.  The normal type Ia SN 2003hv out to very late phases , 2009, 0908.0537.

[52]  F. Timmes,et al.  On Type Ia Supernovae From The Collisions of Two White Dwarfs , 2009, 0907.3915.

[53]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[54]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[55]  E. L. Robinson,et al.  A CATALOG OF NEAR-INFRARED SPECTRA FROM TYPE Ia SUPERNOVAE , 2007, 0906.4085.

[56]  J. Prieto,et al.  Accepted for publication in ApJL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE LUMINOUS AND CARBON-RICH SUPERNOVA 2006GZ: A DOUBLE DEGENERATE MERGER? , 2022 .

[57]  M. S. Burns,et al.  Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study , 2007, astro-ph/0703629.

[58]  R. Kotak,et al.  ESC and KAIT observations of the transitional type Ia SN 2004eo , 2007, astro-ph/0702565.

[59]  P. Mazzali,et al.  A Common Explosion Mechanism for Type Ia Supernovae , 2007, Science.

[60]  J. Neill,et al.  The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star , 2006, Nature.

[61]  D. Kasen Secondary Maximum in the Near-Infrared Light Curves of Type Ia Supernovae , 2006, astro-ph/0606449.

[62]  M. Stritzinger,et al.  Constraints on the progenitor systems of type Ia supernovae , 2005, astro-ph/0506415.

[63]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[64]  Warren R. Brown,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005, astro-ph/0509234.

[65]  D. Branch,et al.  Comparative Direct Analysis of Type Ia Supernova Spectra. I. SN 1994D , 2005, 0712.2436.

[66]  R. Kotak,et al.  The Diversity of Type Ia Supernovae: Evidence for Systematics? , 2004, astro-ph/0411059.

[67]  M. Turatto,et al.  Supernova 2002bo: inadequacy of the single parameter description , 2003, astro-ph/0309665.

[68]  A. Tornambe',et al.  Carbon-Oxygen White Dwarf Accreting CO-Rich Matter. II. Self-Regulating Accretion Process up to the Explosive Stage , 2003 .

[69]  P. Székely,et al.  Photometry of SN 2002bo with template image subtraction , 2003, astro-ph/0306606.

[70]  S. E. Persson,et al.  An asymptotic-giant-branch star in the progenitor system of a type Ia supernova , 2003, Nature.

[71]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[72]  S. Sakai,et al.  Infrared Spectra of the Subluminous Type Ia Supernova SN 1999by , 2001, astro-ph/0112126.

[73]  Thomas Matheson,et al.  Optical Spectroscopy of Type Ib/c Supernovae , 2001, astro-ph/0101119.

[74]  A. Riess,et al.  The Subluminous Type Ia Supernova 1998de in NGC 252 , 2000, astro-ph/0008012.

[75]  R. Schommer,et al.  The Reddening-Free Decline Rate Versus Luminosity Relationship for Type Ia Supernovae , 1999, astro-ph/9907052.

[76]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[77]  M. Turatto,et al.  A New Faint Type Ia Supernova: SN 1997cn in NGC 5490 , 1998, astro-ph/9808013.

[78]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[79]  P. Prugniel,et al.  Kinematical data on early-type galaxies. VI , 1997 .

[80]  J. Spyromilio,et al.  Explosion Diagnostics of Type Ia Supernovae from Early Infrared Spectra , 1997, astro-ph/9709254.

[81]  L. Lucy,et al.  The properties of the peculiar type IA supernova 1991bg - II. The amount of ^56Ni and the total ejecta mass determined from spectrum synthesis and energetics considerations , 1997 .

[82]  R. Schommer,et al.  The Absolute Luminosities of the Calan/Tololo Type Ia Supernovae , 1996, astro-ph/9609059.

[83]  C. Gouiffes,et al.  The properties of the peculiar type Ia supernova 1991bg — I. Analysis and discussion of two years of observations , 1996, astro-ph/9605178.

[84]  P. Hoeflich,et al.  Explosion Models for Type IA Supernovae: A Comparison with Observed Light Curves, Distances, H 0, and Q 0 , 1996, astro-ph/9602025.

[85]  P. Nugent,et al.  Evidence for a Spectroscopic Sequence among Type Ia Supernovae , 1995, astro-ph/9510004.

[86]  S. Woosley,et al.  Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .

[87]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[88]  Jan Peters,et al.  SN 1991bg - A type Ia supernova with a difference , 1993 .

[89]  L. Ho,et al.  The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .

[90]  R. Kirshner,et al.  SN 1991T: Further Evidence of the Heterogeneous Nature of Type IA Supernovae , 1992 .

[91]  D. Schlegel,et al.  The peculiar type Ia SN 1991T : detonation of a white dwarf ? , 1992 .

[92]  Eli Livne,et al.  Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae , 1990 .

[93]  Alan Uomoto,et al.  THE TYPE IA SUPERNOVA 1986G IN NGC 5128 : OPTICAL PHOTOMETRY AND SPECTRA. , 1987 .

[94]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[95]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[96]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[97]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[98]  William A. Fowler,et al.  Nucleosynthesis in Supernovae. , 1960 .