A Tale of Two Type Ia Supernovae: The Fast-declining Siblings SNe 2015bo and 1997cn
暂无分享,去创建一个
D. Young | L. Galbany | B. Shappee | J. Lyman | P. Mazzali | S. Benetti | E. Hsiao | F. Taddia | C. Ashall | E. Baron | M. Stritzinger | R. Díaz | C. Burns | N. Morrell | S. Torres | S. Holmbo | M. Phillips | J. Lu | N. Suntzeff | W. Hoogendam | M. Delgado Mancheño | J. Lu | J. Lu | D. Young | M. Phillips | L. Galbany
[1] S. E. Persson,et al. ASASSN-15hy: An Underluminous, Red 03fg-like Type Ia Supernova , 2021, 2107.08150.
[2] S. E. Persson,et al. Carnegie Supernova Project: The First Homogeneous Sample of Super-Chandrasekhar-mass/2003fg-like Type Ia Supernovae , 2021, The Astrophysical Journal.
[3] S. E. Persson,et al. Strong Near-infrared Carbon Absorption in the Transitional Type Ia SN 2015bp* * This paper includes data gathered with the 6.5 m Magellan Telescope at Las Campanas Observatory, Chile. , 2020, The Astrophysical Journal.
[4] OUP accepted manuscript , 2021, Monthly Notices of the Royal Astronomical Society.
[5] J. Hjorth,et al. A new measurement of the Hubble constant using Type Ia supernovae calibrated with surface brightness fluctuations , 2020, Astronomy & Astrophysics.
[6] S. E. Persson,et al. Carnegie Supernova Project II: The Slowest Rising Type Ia Supernova LSQ14fmg and Clues to the Origin of Super-Chandrasekhar/03fg-like Events , 2020, The Astrophysical Journal.
[7] P. Brown,et al. SN 2013aa and SN 2017cbv: Two Sibling Type Ia Supernovae in the Spiral Galaxy NGC 5643 , 2020, The Astrophysical Journal.
[8] M. Stritzinger,et al. Carnegie Supernova Project-II: A New Method to Photometrically Identify Sub-types of Extreme Type Ia Supernovae , 2020, The Astrophysical Journal.
[9] J. Prieto,et al. The AMUSING++ Nearby Galaxy Compilation. I. Full Sample Characterization and Galactic-scale Outflow Selection , 2020, The Astronomical Journal.
[10] N. E. Sommer,et al. Supernova Siblings: Assessing the Consistency of Properties of Type Ia Supernovae that Share the Same Parent Galaxies , 2020, The Astrophysical Journal.
[11] K. Maguire,et al. Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type Ia supernova 2016hnk , 2019, Astronomy & Astrophysics.
[12] R. Kirshner,et al. A Physical Basis for the H-band Blue-edge Velocity and Light-curve Shape Correlation in Context of Type Ia Supernova Explosion Physics , 2019, The Astrophysical Journal.
[13] R. Kirshner,et al. Carnegie Supernova Project-II: Using Near-infrared Spectroscopy to Determine the Location of the Outer 56Ni in Type Ia Supernovae , 2019, The Astrophysical Journal.
[14] P. Brown,et al. Significant luminosity differences of two twin Type Ia supernovae , 2018, Monthly Notices of the Royal Astronomical Society.
[15] Jessica R. Lu,et al. Carnegie Supernova Project-II: The Near-infrared Spectroscopy Program , 2018, Publications of the Astronomical Society of the Pacific.
[16] S. E. Persson,et al. Carnegie Supernova Project-II: Extending the Near-infrared Hubble Diagram for Type Ia Supernovae to z ∼ 0.1 , 2018, Publications of the Astronomical Society of the Pacific.
[17] S. E. Persson,et al. The Carnegie Supernova Project: Absolute Calibration and the Hubble Constant , 2018, The Astrophysical Journal.
[18] M. Stritzinger,et al. Near-infrared Spectral Evolution of the Type Ia Supernova 2014J in the Nebular Phase: Implications for the Progenitor System , 2018, The Astrophysical Journal.
[19] R. Foley,et al. On the type Ia supernovae 2007on and 2011iv: evidence for Chandrasekhar-mass explosions at the faint end of the luminosity–width relationship , 2018, 1802.09460.
[20] E. Pian,et al. The nebular spectra of the transitional Type Ia Supernovae 2007on and 2011iv: Broad, multiple components indicate aspherical explosion cores , 2018, 1802.09469.
[21] S. Blondin,et al. The detonation of a sub-Chandrasekhar-mass white dwarf at the origin of the low-luminosity Type Ia supernova 1999by , 2017, 1711.09107.
[22] David O. Jones,et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.
[23] S. E. Persson,et al. The Carnegie Supernova Project. I. Third Photometry Data Release of Low-redshift Type Ia Supernovae and Other White Dwarf Explosions , 2017, 1709.05146.
[24] M. Stritzinger,et al. Light and Color Curve Properties of Type Ia Supernovae: Theory Versus Observations , 2017, 1707.05350.
[25] P. Brown,et al. Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404: SN 2007on and SN 2011iv , 2017, 1707.03823.
[26] Astrophysics,et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.
[27] S. Taubenberger. The Extremes of Thermonuclear Supernovae , 2017, 1703.00528.
[28] E. Pian,et al. Abundance stratification in Type Ia supernovae - V. SN 1986G bridging the gap between normal and subluminous SNe Ia , 2016, 1608.05244.
[29] L. Galbany,et al. Characterizing the environments of supernovae with MUSE , 2015, 1511.01495.
[30] E. Baron,et al. Identification of the feature that causes the I-band secondary maximum of a Type Ia supernova , 2015, 1503.03088.
[31] E. O. Ofek,et al. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh , 2015, 1503.02293.
[32] U. Austin,et al. HUNTING FOR SUPERMASSIVE BLACK HOLES IN NEARBY GALAXIES WITH THE HOBBY–EBERLY TELESCOPE , 2015, 1502.00632.
[33] S. Blondin,et al. A one-dimensional Chandrasekhar-mass delayed-detonation model for the broad-lined Type Ia supernova 2002bo , 2015, 1501.06583.
[34] M. Sullivan,et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.
[35] J. Prieto,et al. Type Ia supernovae with bimodal explosions are common – possible smoking gun for direct collisions of white dwarfs , 2014, 1401.3347.
[36] M. Sullivan,et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.
[37] C. Tao,et al. Measuring cosmic bulk flows with Type Ia supernovae from the Nearby Supernova Factory (Corrigendum) , 2013, 1310.4184.
[38] B. Shappee,et al. Greatly enhanced eccentricity oscillations in quadruple systems composed of two binaries: implications for stars, planets and transients , 2013, 1304.3152.
[39] G. Vaucouleurs,et al. Third Reference Catalogue of Bright Galaxies , 2012 .
[40] E. Gall,et al. Interpreting the near-infrared spectra of the 'golden standard' Type Ia supernova 2005cf , 2012, 1208.5949.
[41] J. Prochaska,et al. An empirical relation between sodium absorption and dust extinction , 2012, 1206.6107.
[42] L. Ho,et al. Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.
[43] A. Riess,et al. THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE , 2000, The Astronomical Journal.
[44] Federica B. Bianco,et al. Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.
[45] Wendy L. Freedman,et al. THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy , 2010, 1010.4040.
[46] Kevin Krisciunas,et al. THE DISTANCE TO NGC 1316 (FORNAX A) FROM OBSERVATIONS OF FOUR TYPE Ia SUPERNOVAE , 2010, 1009.4390.
[47] M. Loupias,et al. The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.
[48] Mohan Ganeshalingam,et al. Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.
[49] M. Sullivan,et al. The dependence of Type Ia Supernovae luminosities on their host galaxies , 2010, 1003.5119.
[50] Michael Wegner,et al. Ground-based and Airborne Instrumentation for Astronomy III , 2010 .
[51] J. Sollerman,et al. The normal type Ia SN 2003hv out to very late phases , 2009, 0908.0537.
[52] F. Timmes,et al. On Type Ia Supernovae From The Collisions of Two White Dwarfs , 2009, 0907.3915.
[53] W. M. Wood-Vasey,et al. Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.
[54] Y. Wadadekar,et al. Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .
[55] E. L. Robinson,et al. A CATALOG OF NEAR-INFRARED SPECTRA FROM TYPE Ia SUPERNOVAE , 2007, 0906.4085.
[56] J. Prieto,et al. Accepted for publication in ApJL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE LUMINOUS AND CARBON-RICH SUPERNOVA 2006GZ: A DOUBLE DEGENERATE MERGER? , 2022 .
[57] M. S. Burns,et al. Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study , 2007, astro-ph/0703629.
[58] R. Kotak,et al. ESC and KAIT observations of the transitional type Ia SN 2004eo , 2007, astro-ph/0702565.
[59] P. Mazzali,et al. A Common Explosion Mechanism for Type Ia Supernovae , 2007, Science.
[60] J. Neill,et al. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star , 2006, Nature.
[61] D. Kasen. Secondary Maximum in the Near-Infrared Light Curves of Type Ia Supernovae , 2006, astro-ph/0606449.
[62] M. Stritzinger,et al. Constraints on the progenitor systems of type Ia supernovae , 2005, astro-ph/0506415.
[63] Wendy L. Freedman,et al. The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.
[64] Warren R. Brown,et al. UBVRI Light Curves of 44 Type Ia Supernovae , 2005, astro-ph/0509234.
[65] D. Branch,et al. Comparative Direct Analysis of Type Ia Supernova Spectra. I. SN 1994D , 2005, 0712.2436.
[66] R. Kotak,et al. The Diversity of Type Ia Supernovae: Evidence for Systematics? , 2004, astro-ph/0411059.
[67] M. Turatto,et al. Supernova 2002bo: inadequacy of the single parameter description , 2003, astro-ph/0309665.
[68] A. Tornambe',et al. Carbon-Oxygen White Dwarf Accreting CO-Rich Matter. II. Self-Regulating Accretion Process up to the Explosive Stage , 2003 .
[69] P. Székely,et al. Photometry of SN 2002bo with template image subtraction , 2003, astro-ph/0306606.
[70] S. E. Persson,et al. An asymptotic-giant-branch star in the progenitor system of a type Ia supernova , 2003, Nature.
[71] Caltech,et al. SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.
[72] S. Sakai,et al. Infrared Spectra of the Subluminous Type Ia Supernova SN 1999by , 2001, astro-ph/0112126.
[73] Thomas Matheson,et al. Optical Spectroscopy of Type Ib/c Supernovae , 2001, astro-ph/0101119.
[74] A. Riess,et al. The Subluminous Type Ia Supernova 1998de in NGC 252 , 2000, astro-ph/0008012.
[75] R. Schommer,et al. The Reddening-Free Decline Rate Versus Luminosity Relationship for Type Ia Supernovae , 1999, astro-ph/9907052.
[76] I. Hook,et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.
[77] M. Turatto,et al. A New Faint Type Ia Supernova: SN 1997cn in NGC 5490 , 1998, astro-ph/9808013.
[78] A. G. Alexei,et al. OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .
[79] P. Prugniel,et al. Kinematical data on early-type galaxies. VI , 1997 .
[80] J. Spyromilio,et al. Explosion Diagnostics of Type Ia Supernovae from Early Infrared Spectra , 1997, astro-ph/9709254.
[81] L. Lucy,et al. The properties of the peculiar type IA supernova 1991bg - II. The amount of ^56Ni and the total ejecta mass determined from spectrum synthesis and energetics considerations , 1997 .
[82] R. Schommer,et al. The Absolute Luminosities of the Calan/Tololo Type Ia Supernovae , 1996, astro-ph/9609059.
[83] C. Gouiffes,et al. The properties of the peculiar type Ia supernova 1991bg — I. Analysis and discussion of two years of observations , 1996, astro-ph/9605178.
[84] P. Hoeflich,et al. Explosion Models for Type IA Supernovae: A Comparison with Observed Light Curves, Distances, H 0, and Q 0 , 1996, astro-ph/9602025.
[85] P. Nugent,et al. Evidence for a Spectroscopic Sequence among Type Ia Supernovae , 1995, astro-ph/9510004.
[86] S. Woosley,et al. Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .
[87] M. Phillips,et al. The Absolute Magnitudes of Type IA Supernovae , 1993 .
[88] Jan Peters,et al. SN 1991bg - A type Ia supernova with a difference , 1993 .
[89] L. Ho,et al. The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .
[90] R. Kirshner,et al. SN 1991T: Further Evidence of the Heterogeneous Nature of Type IA Supernovae , 1992 .
[91] D. Schlegel,et al. The peculiar type Ia SN 1991T : detonation of a white dwarf ? , 1992 .
[92] Eli Livne,et al. Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae , 1990 .
[93] Alan Uomoto,et al. THE TYPE IA SUPERNOVA 1986G IN NGC 5128 : OPTICAL PHOTOMETRY AND SPECTRA. , 1987 .
[94] A. V. Tutukov,et al. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .
[95] R. Webbink. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .
[96] W. Arnett. Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .
[97] J. Whelan,et al. Binaries and Supernovae of Type I , 1973 .
[98] William A. Fowler,et al. Nucleosynthesis in Supernovae. , 1960 .