A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting.

Nanomaterials have gained plenty of research interest because of their excellent performance, which is derived from their small size and special structure. In practical applications, to acquire nanomaterials with high performance, many methods have been used to modulate the structure and components of materials. To date, ion beam techniques have extensively been applied for modulating the performance of various nanomaterials. Energetic ion beams can modulate the surface morphology and chemical components of nanomaterials. In addition, ion beam techniques have also been used to fabricate nanomaterials, including 2D materials, nanoparticles, and nanowires. Compared with conventional methods, ion beam techniques, including ion implantation, ion irradiation, and focused ion beam, are all pure physical processes; these processes do not introduce any impurities into the target materials. In addition, ion beam techniques exhibit high controllability and repeatability. Here, recent progress in ion beam techniques for nanomaterial surface modification is systematically summarized and existing challenges and potential solutions are presented.

[1]  D. Cao,et al.  Nitrogen and Fluorine-Codoped Porous Carbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. , 2017, ACS applied materials & interfaces.

[2]  F. J. Garcia-Vidal,et al.  Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime , 2005, Nature materials.

[3]  Feng Chen,et al.  Ion beam modification of two-dimensional materials: Characterization, properties, and applications , 2017 .

[4]  Changzhong Jiang,et al.  Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation , 2018, Nanotechnology.

[5]  M. Toimil-Molares,et al.  Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission. , 2016, ACS applied materials & interfaces.

[6]  Jong Min Kim,et al.  Graphene synthesis by C implantation into Cu foils , 2014 .

[7]  Yao Zheng,et al.  Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution , 2016 .

[8]  I, N-Codoping Modification of TiO2 for Enhanced Photoelectrochemical H2O Splitting in Visible-Light Region , 2017 .

[9]  Jacopo Forneris,et al.  Development and Characterization of a Diamond-Insulated Graphitic Multi Electrode Array Realized with Ion Beam Lithography , 2014, Sensors.

[10]  P. Chu,et al.  Synthesis of Layer‐Tunable Graphene: A Combined Kinetic Implantation and Thermal Ejection Approach , 2015 .

[11]  D. F. Ogletree,et al.  Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography. , 2013, Nano letters.

[12]  Jung-Hui Chen,et al.  Endurance Improvement Technology With Nitrogen Implanted in the Interface of ${\rm WSiO}_{\bf x}$ Resistance Switching Device , 2013, IEEE Electron Device Letters.

[13]  S. Sharma,et al.  Structural and luminescence responses of CaMoO4 nano phosphors synthesized by hydrothermal route to swift heavy ion irradiation: Elemental and spectral stability , 2017 .

[14]  Sandor Nietzsche,et al.  Permanent bending and alignment of ZnO nanowires , 2011, Nanotechnology.

[15]  H. Mizuta,et al.  Raman study of damage extent in graphene nanostructures carved by high energy helium ion beam , 2014 .

[16]  Yayuan Liu,et al.  Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting , 2015, Nature Communications.

[17]  C. Trautmann,et al.  Ultrafast ion sieving using nanoporous polymeric membranes , 2018, Nature Communications.

[18]  F. Giustino,et al.  TiO2 anatase with a bandgap in the visible region. , 2014, Nano letters.

[19]  Jihyun Kim,et al.  Development of solar-blind photodetectors based on Si-implanted β-Ga(2)O(3). , 2015, Optics express.

[20]  S. Bhansali,et al.  Ion implantation based selective synthesis of silica nanowires on silicon wafers , 2006 .

[21]  M. Elimelech,et al.  Environmental applications of carbon-based nanomaterials. , 2008, Environmental science & technology.

[22]  K. Temst,et al.  Tuning quantum corrections and magnetoresistance in ZnO nanowires by ion implantation. , 2012, Nano letters.

[23]  A. Krasheninnikov,et al.  Engineering of nanostructured carbon materials with electron or ion beams. , 2007, Nature materials.

[24]  Linfeng Hu,et al.  Low‐Dimensional Nanostructure Ultraviolet Photodetectors , 2013, Advanced materials.

[25]  X. Zu,et al.  Optical and magnetic properties of Ni nanoparticles in rutile formed by Ni ion implantation , 2006 .

[26]  A. Fisher,et al.  Cu,N-codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction. , 2016, ACS applied materials & interfaces.

[27]  J. Xue,et al.  Synthesis of ultra-thin carbon layers on SiC substrate by ion implantation , 2015 .

[28]  Resistive switching properties of HfO2-based ReRAM with implanted Si/Al ions , 2012 .

[29]  C. Hu,et al.  Effect of Top Electrode Material on Resistive Switching Properties of $\hbox{ZrO}_{2}$ Film Memory Devices , 2007, IEEE Electron Device Letters.

[30]  Min Chen,et al.  ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector. , 2011, Small.

[31]  Min-Ho Kang,et al.  Impact of crystalline damage on a vertically integrated junctionless nanowire transistor , 2016 .

[32]  W. Kwok,et al.  Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te) , 2015, Science Advances.

[33]  P. Jelínek,et al.  Achieving high-quality single-atom nitrogen doping of graphene/SiC(0001) by ion implantation and subsequent thermal stabilization. , 2014, ACS nano.

[34]  Junjie Li,et al.  Single Grain Boundary Break Junction for Suspended Nanogap Electrodes with Gapwidth Down to 1–2 nm by Focused Ion Beam Milling , 2015, Advanced materials.

[35]  Jiehua Bao,et al.  Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production. , 2018, ACS applied materials & interfaces.

[36]  J. Räisänen,et al.  Sculpturing nanowires with ion beams. , 2009, Small.

[37]  S. Garaj,et al.  Graphene synthesis by ion implantation. , 2010, Applied physics letters.

[38]  E. Borsella,et al.  SYNTHESIS OF GaN QUANTUM DOTS BY ION IMPLANTATION IN DIELECTRICS , 2001 .

[39]  Daqin Chen,et al.  Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials. , 2013, Nanoscale.

[40]  Y. Chueh,et al.  Photoluminescence Characteristics of Multilayer HfSe2 Synthesized on Sapphire Using Ion Implantation , 2018 .

[41]  Yu Huang,et al.  Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation. , 2015, Nano letters.

[42]  J. Jacobson,et al.  Focused ion beam-assisted bending of silicon nanowires for complex three dimensional structures , 2009 .

[43]  N. Jana,et al.  Nitrogen and Fluorine Codoped, Colloidal TiO2 Nanoparticle: Tunable Doping, Large Red-Shifted Band Edge, Visible Light Induced Photocatalysis, and Cell Death. , 2018, ACS applied materials & interfaces.

[44]  J. Kong,et al.  Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene. , 2015, Nano letters.

[45]  Qiyuan He,et al.  Recent Advances in Ultrathin Two-Dimensional Nanomaterials. , 2017, Chemical reviews.

[46]  B. Kooi,et al.  Aligned Gold Nanorods in Silica Made by Ion Irradiation of Core–Shell Colloidal Particles , 2004 .

[47]  M. Helm,et al.  Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing , 2008, 0908.0458.

[48]  Yi Cui,et al.  Promises and challenges of nanomaterials for lithium-based rechargeable batteries , 2016, Nature Energy.

[49]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[50]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[51]  Shaohua Shen,et al.  Activating ZnO nanorod photoanodes in visible light by Cu ion implantation , 2014, Nano Research.

[52]  Janghyuk Kim,et al.  Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation , 2015 .

[53]  Kenji Watanabe,et al.  Defect Control and n-Doping of Encapsulated Graphene by Helium-Ion-Beam Irradiation. , 2015, Nano letters.

[54]  Bryan Ellis,et al.  Ultra-low Threshold electrically pumped quantum dot photonic crystal nanocavity laser , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[55]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[56]  Yang Yu,et al.  Gate dielectric ion implantation to modulate the threshold voltage of In2O3 nanowire field effect transistors , 2016 .

[57]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[58]  C. Trautmann,et al.  Highly Selective Ionic Transport through Subnanometer Pores in Polymer Films , 2016 .

[59]  Qi Liu,et al.  Nonpolar Nonvolatile Resistive Switching in Cu Doped $\hbox{ZrO}_{2}$ , 2008, IEEE Electron Device Letters.

[60]  M. Elimelech,et al.  Environmental applications of graphene-based nanomaterials. , 2015, Chemical Society reviews.

[61]  Tomoya Yoshida,et al.  Vertical silicon waveguide coupler bent by ion implantation. , 2015, Optics express.

[62]  S. Slesazeck,et al.  Local ion irradiation-induced resistive threshold and memory switching in Nb2O5/NbO(x) films. , 2014, ACS applied materials & interfaces.

[63]  Zhiyong Fan,et al.  Controlled nanoscale doping of semiconductors via molecular monolayers. , 2008, Nature materials.

[64]  R. M. Bradley,et al.  Theory of ripple topography induced by ion bombardment , 1988 .

[65]  Lifeng Liu,et al.  Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach , 2011 .

[66]  Jannik C. Meyer,et al.  Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene , 2015, Nano letters.

[67]  Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications , 2017, 1704.01567.

[68]  R. Ghaffari,et al.  Recent Advances in Flexible and Stretchable Bio‐Electronic Devices Integrated with Nanomaterials , 2016, Advanced materials.

[69]  D. Ohlberg,et al.  Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. , 2014, ACS nano.

[70]  G. W. Arnold,et al.  Aggregation and migration of ion‐implanted silver in lithia‐alumina‐silica glass , 1977 .

[71]  Ja Hoon Koo,et al.  Colloidal Synthesis of Uniform‐Sized Molybdenum Disulfide Nanosheets for Wafer‐Scale Flexible Nonvolatile Memory , 2016, Advanced materials.

[72]  Nuanyang Cui,et al.  High‐Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates , 2011 .

[73]  Henry I. Smith,et al.  Membrane folding by helium ion implantation for three-dimensional device fabrication , 2007 .

[74]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[75]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[76]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[77]  M. Batzill,et al.  A two-dimensional phase of TiO₂ with a reduced bandgap. , 2011, Nature chemistry.

[78]  Qi Liu,et al.  Breaking the Current‐Retention Dilemma in Cation‐Based Resistive Switching Devices Utilizing Graphene with Controlled Defects , 2018, Advanced materials.

[79]  S. T. Picraux,et al.  Nanoscale manipulation of Ge nanowires by ion irradiation , 2009 .

[80]  Xiao Wei Sun,et al.  A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation , 2008 .

[81]  Sheng Dai,et al.  Water desalination using nanoporous single-layer graphene. , 2015, Nature nanotechnology.

[82]  R. Karnik,et al.  Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. , 2014, ACS nano.

[83]  E. Bano,et al.  Fabrication of Ion-Implanted Si Nanowire p-FETs , 2008 .

[84]  Lynn A. Boatner,et al.  Nanocomposite Materials Formed by Ion Implantation , 2001 .

[85]  Alfred Forchel,et al.  Mass and dose dependence of ion‐implantation‐induced intermixing of GaAs/GaAlAs quantum‐well structures , 1990 .

[86]  R. Waser,et al.  Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems. , 2016, Nature nanotechnology.

[87]  H. Swart,et al.  Swift heavy ion irradiation induced modification in structural, optical and luminescence properties of Y2O3:Tb3+ nanophosphor , 2014 .

[88]  Xiaobo Chen,et al.  The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. , 2008, Journal of the American Chemical Society.

[89]  Gang Zhang,et al.  Impacts of doping on thermal and thermoelectric properties of nanomaterials. , 2010, Nanoscale.

[90]  Changzhong Jiang,et al.  Construct Fe2+ species and Au particles for significantly enhanced photoelectrochemical performance of α-Fe2O3 by ion implantation , 2017, Science China Materials.

[91]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[92]  V. Roy,et al.  Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. , 2015, Nanoscale.

[93]  S. Brock Nanostructures and Nanomaterials: Synthesis, Properties and Applications By Guozhang Cao (University of Washington). Imperial College Press (distributed by World Scientific): London. 2004. xiv + 434 pp. $78.00. ISBN 1-86094-415-9. , 2004 .

[94]  Koichiro Tanaka,et al.  Ultrafast Optical Switching in a Silver Nanoparticle System , 2000 .

[95]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[96]  Meiyong Liao,et al.  A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures , 2013, Sensors.

[97]  S. Sugawa,et al.  Improvement in the Negative Bias Illumination Stress Stability for Silicon-Ion Implanted Amorphous InGaZnO Thin-Film Transistors , 2017, IEEE Electron Device Letters.

[98]  J. Coleman,et al.  Nanopatterning and Electrical Tuning of MoS2 Layers with a Subnanometer Helium Ion Beam. , 2015, Nano letters.

[99]  A. Williamson,et al.  Structural stability and optical properties of nanomaterials with reconstructed surfaces. , 2003, Physical review letters.

[100]  S. Ogale,et al.  Columnar defect induced phase transformation in epitaxial La0.7Ca0.3MnO3 films , 2000 .

[101]  Feng Chen,et al.  Two-Dimensional Heterostructure as a Platform for Surface-Enhanced Raman Scattering. , 2017, Nano letters.

[102]  R. Bertoncello,et al.  Chemical and physical routes for composite materials synthesis: Ag and Ag2S nanoparticles in silica glass by sol–gel and ion implantation techniques , 2002 .

[103]  "Black" TiO2 Nanotubes Formed by High-Energy Proton Implantation Show Noble-Metal-co-Catalyst Free Photocatalytic H2-Evolution. , 2015, Nano letters.

[104]  N. Aluru,et al.  DNA base detection using a single-layer MoS2. , 2014, ACS nano.

[105]  George Barbastathis,et al.  Membrane folding by ion implantation induced stress to fabricate three-dimensional nanostructures , 2007 .

[106]  Feng Chen,et al.  Enhancement of Out-of-Plane Charge Transport in a Vertically Stacked Two-Dimensional Heterostructure Using Point Defects. , 2018, ACS nano.

[107]  E. Jacquet,et al.  Study of swift heavy ion tracks on crystalline quartz surfaces , 2003 .

[108]  Yuichi Ichihashi,et al.  The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method , 2001 .

[109]  V. Colvin The potential environmental impact of engineered nanomaterials , 2003, Nature Biotechnology.

[110]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[111]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[112]  Gongming Wang,et al.  The “Midas Touch” Transformation of TiO2 Nanowire Arrays during Visible Light Photoelectrochemical Performance by Carbon/Nitrogen Coimplantation , 2018 .

[113]  P. Schmuki,et al.  Intrinsic Au Decoration of Growing TiO2 Nanotubes and Formation of a High‐Efficiency Photocatalyst for H2 Production , 2013, Advanced materials.

[114]  Jakob Buchheim,et al.  Ultimate Permeation Across Atomically Thin Porous Graphene , 2014, Science.

[115]  Liang Fang,et al.  Controllable N-doping of graphene. , 2010, Nano letters.

[116]  S. Boden,et al.  Helium ion beam lithography on fullerene molecular resists for sub-10nm patterning , 2016 .

[117]  Boyang Wang,et al.  Selective ion passage through functionalized graphene nanopores. , 2008, Journal of the American Chemical Society.

[118]  J. Grossman,et al.  Water desalination across nanoporous graphene. , 2012, Nano letters.

[119]  Chia-Wei Chen,et al.  Synthesis of nonepitaxial multilayer silicene assisted by ion implantation. , 2016, Nanoscale.

[120]  Yoshiki Sakuma,et al.  Fabrication of ZnO nanoparticles in SiO2 by ion implantation combined with thermal oxidation , 2005 .

[121]  Pablo Jarillo-Herrero,et al.  Etching of graphene devices with a helium ion beam. , 2009, ACS nano.

[122]  Y. Liu,et al.  Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices , 2009 .

[123]  Jinxia Xu,et al.  Modulating the threshold voltage of oxide nanowire field-effect transistors by a Ga+ ion beam , 2014, Nano Research.

[124]  H. Fan,et al.  In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution , 2017 .

[125]  Frederick T. Chen,et al.  Low-Power and Nanosecond Switching in Robust Hafnium Oxide Resistive Memory With a Thin Ti Cap , 2010, IEEE Electron Device Letters.

[126]  C. Trautmann,et al.  Surface plasmonic spectroscopy revealing the oxidation dynamics of copper nanowires embedded in polycarbonate ion-track templates , 2016 .

[127]  Yun Liu,et al.  Colossal Dielectric Permittivity in (Nb+Al) Codoped Rutile TiO2 Ceramics: Compositional Gradient and Local Structure , 2015 .

[128]  Pravin Kumar,et al.  Direct growth of few layer graphene on SiO2 substrate by low energy carbon ion implantation , 2016 .

[129]  Y-R Kim,et al.  Focused ion beam induced deflections of freestanding thin films. , 2006, Journal of applied physics.

[130]  A. Krasheninnikov,et al.  Tailoring the optical properties of atomically-thin WS2via ion irradiation. , 2017, Nanoscale.

[131]  Leone Spiccia,et al.  Nanomaterials: Applications in Cancer Imaging and Therapy , 2011, Advanced materials.

[132]  Feng Lin,et al.  Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries , 2014, Nature Communications.

[133]  D. Pribat,et al.  Synthesis of few-layered graphene by ion implantation of carbon in nickel thin films , 2011, Nanotechnology.

[134]  J. Jang,et al.  Enhanced Photocatalytic Degradation of Organic Pollutants and Inactivation of Listeria monocytogenes by Visible Light Active Rh–Sb Codoped TiO2 Nanorods , 2018 .

[135]  Mira Josowicz,et al.  Composites of intrinsically conducting polymers as sensing nanomaterials. , 2008, Chemical reviews.

[136]  M. Popall,et al.  Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. , 2011, Chemical Society reviews.

[137]  A. V. van Duin,et al.  Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation. , 2016, ACS nano.

[138]  G. Gary Wang,et al.  Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting , 2017 .

[139]  TiO2 Nanotubes: Nitrogen-Ion Implantation at Low Dose Provides Noble-Metal-Free Photocatalytic H2 -Evolution Activity. , 2016, Angewandte Chemie.

[140]  Shinhyun Choi,et al.  Tuning resistive switching characteristics of tantalum oxide memristors through Si doping. , 2014, ACS nano.

[141]  N. Zhang,et al.  Toward improving the graphene-semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator. , 2014, ACS nano.

[142]  Seungchul Kim,et al.  Simultaneously Controllable Doping Sites and the Activity of a W–N Codoped TiO2 Photocatalyst , 2016 .

[143]  J. Robinson,et al.  Nitrogen-Doped Graphene and Twisted Bilayer Graphene via Hyperthermal Ion Implantation with Depth Control. , 2016, ACS nano.

[144]  T. Wu,et al.  Facile sonochemical synthesis of N,Cl-codoped TiO2: Synthesis effects, mechanism and photocatalytic performance , 2015 .

[145]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[146]  Shaohua Shen,et al.  V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light , 2015 .

[147]  R. Zhang,et al.  Direct graphene synthesis on SiO2/Si substrate by ion implantation , 2013 .

[148]  J. Groenen,et al.  Three dimensional design of silver nanoparticle assemblies embedded in dielectrics for Raman spectroscopy enhancement and dark-field imaging. , 2011, ACS nano.

[149]  Bing Sun,et al.  Ionic doping effect in ZrO2 resistive switching memory , 2010 .

[150]  F. Zhang,et al.  Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories , 2018, Nature Materials.

[151]  Samuel M. Nicaise,et al.  Neon Ion Beam Lithography (NIBL). , 2011, Nano letters.

[152]  Synthesis of graphene by MEVVA source ion implantation , 2013 .

[153]  Hui‐Ming Cheng,et al.  A red anatase TiO2 photocatalyst for solar energy conversion , 2012 .

[154]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[155]  Peng Wang,et al.  Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. , 2013, Nano letters.

[156]  Wen-Yuan Chang,et al.  Resistive switching behaviors of ZnO nanorod layers , 2010 .

[157]  Jing Kong,et al.  Large Photothermal Effect in Sub-40 nm h-BN Nanostructures Patterned Via High-Resolution Ion Beam. , 2018, Small.

[158]  B. Liu,et al.  Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. , 2013, Journal of the American Chemical Society.

[159]  Dar-Bin Shieh,et al.  Control and Detection of Organosilane Polarization on Nanowire Field-Effect Transistors , 2007 .

[160]  Superplastic nanoscale pore shaping by ion irradiation , 2018, Nature Communications.

[161]  Luda Wang,et al.  Selective molecular sieving through porous graphene. , 2012, Nature nanotechnology.

[162]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[163]  R. Sinclair,et al.  Erratum: Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance , 2013, Nature Communications.

[164]  Qi Liu,et al.  Resistive switching memory effect of ZrO2 films with Zr+ implanted , 2008 .

[165]  Feng Chen,et al.  Enhanced Raman Scattering of CuPc Films on Imperfect WSe2 Monolayer Correlated to Exciton and Charge‐Transfer Resonances , 2018, Advanced Functional Materials.

[166]  Woong-Ki Hong,et al.  Irradiation effects of high-energy proton beams on MoS2 field effect transistors. , 2014, ACS nano.

[167]  C. Ballif,et al.  Axial p-n junctions realized in silicon nanowires by ion implantation. , 2009, Nano letters.

[168]  V. Zaporojtchenko,et al.  Metal‐Polymer Nanocomposites for Functional Applications , 2010 .

[169]  Dumitru Dumcenco,et al.  Identification of single nucleotides in MoS2 nanopores. , 2015, Nature nanotechnology.

[170]  Shaohua Shen,et al.  Fabrication of porous TiO2 nanorod array photoelectrodes with enhanced photoelectrochemical water splitting by helium ion implantation. , 2016, Nanoscale.

[171]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[172]  R. Fernandes,et al.  Synthesis and Characterization of Cu and N Codoped RF-Sputtered TiO2 Films: Photoluminescence Dynamics of Charge Carriers Relevant for Water Splitting , 2016 .

[173]  Woojin Park,et al.  Tuning of the electronic characteristics of ZnO nanowire field effect transistors by proton irradiation. , 2010, ACS nano.

[174]  M. Anpo,et al.  Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2 , 2003 .

[175]  Andrew A. Bettiol,et al.  ION BEAM LITHOGRAPHY AND NANOFABRICATION: A REVIEW , 2005 .

[176]  Tao Wu,et al.  Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. , 2010, Journal of the American Chemical Society.

[177]  Wei Wu,et al.  Design of high-performance memristor cell using W-implanted SiO2 films , 2016 .

[178]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[179]  C. Marcus,et al.  Precision cutting and patterning of graphene with helium ions , 2009, Nanotechnology.

[180]  Yen Wei,et al.  One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. , 2009, Small.

[181]  박영수,et al.  Resistance random access memory , 2011 .

[182]  Fanli Meng,et al.  Formation of Carbonized Polystyrene Sphere/hemisphere Shell Arrays by Ion Beam Irradiation and Subsequent Annealing or Chloroform Treatment , 2015, Scientific Reports.

[183]  Yu Huang,et al.  High‐Performance Top‐Gated Graphene‐Nanoribbon Transistors Using Zirconium Oxide Nanowires as High‐Dielectric‐Constant Gate Dielectrics , 2010, Advanced materials.

[184]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.