Synergistic Effect of CoFe2O4-85S Nano Bio-glass Composites for Hyperthermia and Controlled Drug Delivery

[1]  F. Divsar,et al.  Antibacterial Properties of Cobalt Ferrite Magnetic Nanoparticles Loaded on Date Palm Pollen Against Multidrug-Resistant Bacteria , 2023, Arabian Journal for Science and Engineering.

[2]  A. Garanina,et al.  Cobalt Ferrite Nanoparticles for Tumor Therapy: Effective Heating versus Possible Toxicity , 2021, Nanomaterials.

[3]  J. Haider,et al.  Evaluating the antibacterial effect of cobalt nanoparticles against multi-drug resistant pathogens , 2021, Journal of medicine and life.

[4]  Jiale Wang,et al.  Synthesis, characterization, and evaluation of antibacterial activity of transition metal oxyde nanoparticles , 2021, Journal of Materials Science: Materials in Medicine.

[5]  M. Shoaib,et al.  Magnesium doped mesoporous bioactive glass nanoparticles: A promising material for apatite formation and mitomycin c delivery to the MG-63 cancer cells , 2021 .

[6]  C. Caizer Theoretical Study on Specific Loss Power and Heating Temperature in CoFe2O4 Nanoparticles as Possible Candidate for Alternative Cancer Therapy by Superparamagnetic Hyperthemia , 2021, Applied Sciences.

[7]  K. Singh,et al.  Bioactive glasses and glass–ceramics for hyperthermia treatment of cancer: state-of-art, challenges, and future perspectives , 2021, Materials today. Bio.

[8]  Joonho Lee,et al.  Synthesis, characterization and magnetic hyperthermia properties of nearly monodisperse CoFe2O4 nanoparticles , 2020, Ceramics International.

[9]  M. Miscuglio,et al.  Exploiting Unique Alignment of Cobalt Ferrite Nanoparticles, Mild Hyperthermia, and Controlled Intrinsic Cobalt Toxicity for Cancer Therapy , 2020, Advanced materials.

[10]  M. Mehrdad,et al.  Synthesis and potent antimicrobial activity of CoFe2O4 nanoparticles under visible light , 2020, Heliyon.

[11]  A. Dubey,et al.  Superparamagnetic Manganese Ferrite and Strontium Bioactive Glass Nanocomposites: Enhanced Biocompatibility and Antimicrobial Properties for Hyperthermia Application , 2020, Advanced Engineering Materials.

[12]  M. Yasir,et al.  Magnetic mesoporous bioactive glass for synergetic use in bone regeneration, hyperthermia treatment, and controlled drug delivery , 2020, RSC advances.

[13]  A. Majouga,et al.  Magnetic Properties and Magnetic Hyperthermia of Cobalt Ferrite Nanoparticles Synthesized by Hydrothermal Method , 2020 .

[14]  Zakaria Tabia,et al.  Mesoporous bioactive glass nanoparticles doped with magnesium: drug delivery and acellular in vitro bioactivity , 2019, RSC advances.

[15]  J. Nedelec,et al.  Deeper Insights into a Bioactive Glass Nanoparticle Synthesis Protocol To Control Its Morphology, Dispersibility, and Composition , 2019, ACS omega.

[16]  L. Grover,et al.  Influence of Cobalt Ions on Collagen Gel Formation and Their Interaction with Osteoblasts , 2018, ACS omega.

[17]  M. Kavallaris,et al.  Biologically Targeted Magnetic Hyperthermia: Potential and Limitations , 2018, Front. Pharmacol..

[18]  D. Mohebbi-Kalhori,et al.  Synthesis, Characterization, and in Vitro Biological Evaluation of Copper-Containing Magnetic Bioactive Glasses for Hyperthermia in Bone Defect Treatment. , 2018, ACS biomaterials science & engineering.

[19]  D. D. Dung,et al.  Size-controlled heating ability of CoFe 2 O 4 nanoparticles for hyperthermia applications , 2018 .

[20]  V. Umapathy,et al.  Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol–gel method: structural, morphological, optical, magnetic, catalytic and biological activities , 2017, Journal of Nanostructure in Chemistry.

[21]  M. Shoaib,et al.  Mesoporous nano-bioglass designed for the release of imatinib and in vitro inhibitory effects on cancer cells. , 2017, Materials science & engineering. C, Materials for biological applications.

[22]  S. Haider,et al.  Thermal decomposition of metal complex precursor as route to the synthesis of Co3O4 nanoparticles: Antibacterial activity and mechanism , 2017 .

[23]  H. Kim,et al.  Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells through integrin/BMP/mTOR signaling pathways , 2016, International journal of nanomedicine.

[24]  H. Kim,et al.  Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. , 2016, Nanoscale.

[25]  S. Sp,et al.  Structural, Magnetic and In Vitro Bioactivity of Co-Cu Ferrite and BioglassComposite for Hyperthermia in Bone Tissue Engineering , 2016 .

[26]  M. Farag,et al.  Bioactive Glass Nanoparticles as a New Delivery System for Sustained 5-Fluorouracil Release: Characterization and Evaluation of Drug Release Mechanism , 2015 .

[27]  D. Uskoković,et al.  Enhanced Osteogenesis of Nanosized Cobalt-substituted Hydroxyapatite , 2015 .

[28]  S. Arepalli,et al.  Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass. , 2015, Materials science & engineering. C, Materials for biological applications.

[29]  Chikara Ohtsuki,et al.  A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants , 2015, Journal of Materials Science: Materials in Medicine.

[30]  Z. Abbas,et al.  Effect of Temperature on Structural, Magnetic and Dielectric Properties of Cobalt Ferrite Nanoparticles Prepared via Co-precipitation Method , 2015 .

[31]  H. Kim,et al.  Bioactive and porous-structured nanocomposite microspheres effective for cell delivery: a feasibility study for bone tissue engineering , 2014 .

[32]  Jie Chen,et al.  Preconditioning and post-treatment with cobalt chloride in rat model of perinatal hypoxic–ischemic encephalopathy , 2014, Brain and Development.

[33]  J. Wesselinowa,et al.  Ferrimagnetic nanoparticles for self-controlled magnetic hyperthermia , 2013 .

[34]  H. Kim,et al.  Silica-based mesoporous nanoparticles for controlled drug delivery , 2013, Journal of tissue engineering.

[35]  Greeshma Thrivikraman,et al.  Substrate conductivity dependent modulation of cell proliferation and differentiation in vitro. , 2013, Biomaterials.

[36]  M. Cañete,et al.  Magnetic Hyperthermia Properties of Electrosynthesized Cobalt Ferrite Nanoparticles , 2013 .

[37]  Qiang Gao,et al.  In vitro evaluation of electrospun gelatin‐bioactive glass hybrid scaffolds for bone regeneration , 2013 .

[38]  D. Uskoković,et al.  Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones , 2012, Journal of Materials Science: Materials in Medicine.

[39]  A. Abdelghany,et al.  Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass , 2012 .

[40]  Jiang Chang,et al.  Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application , 2012, Interface Focus.

[41]  A. Boccaccini,et al.  Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review , 2012, Journal of Materials Science: Materials in Medicine.

[42]  R. Ramanujan,et al.  Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. , 2010, Acta biomaterialia.

[43]  J. Jacobs,et al.  Soluble and particulate Co‐Cr‐Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: A novel mechanism for implant debris reactivity , 2009, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[44]  Jin-Seung Jung,et al.  Fabrication and magnetic properties of MnFe2O4 nanowire arrays , 2009 .

[45]  M. Bohner,et al.  Can bioactivity be tested in vitro with SBF solution? , 2009, Biomaterials.

[46]  María Vallet-Regí,et al.  Mesoporous materials for drug delivery. , 2007, Angewandte Chemie.

[47]  J. Ferreira,et al.  Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass. , 2007, Acta biomaterialia.

[48]  S. Zurn,et al.  Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application , 2007 .

[49]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[50]  S. Dutz,et al.  Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy , 2006 .

[51]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[52]  C. Supuran,et al.  Antibacterial cobalt (II), copper (II), nickel (II) and zinc (II) complexes of mercaptothiadiazole—derived furanyl, thienyl, pyrrolyl, salicylyl and pyridinyl Schiff bases , 2006, Journal of enzyme inhibition and medicinal chemistry.

[53]  Tetsuhiro Tanaka,et al.  Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model , 2005, Laboratory Investigation.

[54]  B. Wegiel,et al.  Heme oxygenase-1-dependent and -independent regulation of angiogenic genes expression: effect of cobalt protoporphyrin and cobalt chloride on VEGF and IL-8 synthesis in human microvascular endothelial cells. , 2005, Cellular and molecular biology.

[55]  S. Spriano,et al.  The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass-ceramics. , 2005, Acta biomaterialia.

[56]  T. Yao,et al.  Preparation of Glass-Ceramics Containing Ferrimagnetic Zinc-Iron Ferrite for the Hyperthermal Treatment of Cancer , 2004 .

[57]  P. Moroz,et al.  Magnetically mediated hyperthermia: current status and future directions , 2002, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[58]  V. Good,et al.  Cobalt ions influence proliferation and function of human osteoblast-like cells , 2002, Acta orthopaedica Scandinavica.

[59]  O. S. Nielsen,et al.  A future for hyperthermia in cancer treatment? , 2001, European journal of cancer.

[60]  Shouguo Wang,et al.  Infrared transmittance spectra of the granular perovskite , 1998 .

[61]  Yong-Keun Lee,et al.  Crystallization and Properties of Fe2O3—CaO—SiO2 Glasses , 1996 .

[62]  K. Raj,et al.  Advances in ferrofluid technology , 1995 .

[63]  K. Nakanishi,et al.  Process of formation of bone-like apatite layer on silica gel , 1993 .

[64]  C. Ohtsuki,et al.  Compositional dependence of bioactivity of glasses in the system CaO-SiO2-Al2O3: itsin vitro evaluation , 1992 .

[65]  G. R. Mansfield,et al.  Glass-ceramic-mediated, magnetic-field-induced localized hyperthermia: response of a murine mammary carcinoma. , 1983, Radiation research.

[66]  K. Sampath Structural, Magnetic and In Vitro Bioactivity of Co-Cu Ferrite and Bioglass Composite for Hyperthermia in Bone Tissue Engineering , 2017 .

[67]  S. Luo,et al.  Clinical trials of magnetic induction hyperthermia for treatment of tumours , 2014 .

[68]  F. Moztarzadeh,et al.  Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass , 2009 .

[69]  Shaobin Wang,et al.  Ordered mesoporous materials for drug delivery , 2009 .

[70]  H. Hsu,et al.  Crystallization kinetics and magnetic properties of iron oxide contained 25Li2O–8MnO2–20CaO–2P2O5–45SiO2 glasses , 2007 .

[71]  Yong-Keun Lee,et al.  Controlled nucleation and crystallization in Fe2O3–CaO–SiO2 glass , 1997 .

[72]  T. Kokubo,et al.  Bioactivity of ferrimagnetic glass-ceramics in the system FeO-Fe2O3-CaO-SiO2. , 1997, Biomaterials.

[73]  T. Yamamuro,et al.  Crystallization of (FeO, Fe2O3)-CaO-SiO2 Glasses and Magnetic Properties of Their Crystallized Products , 1991 .

[74]  E. Evans,et al.  The in vitro toxicity of cobalt-chrome-molybdenum alloy and its constituent metals. , 1986, Biomaterials.

[75]  Philip C. Thackray,et al.  Indirect Heating Source for Treatment of Malignant Brain Tumours , 1974 .

[76]  F. Laves,et al.  Ordnung / Unordnung und Ultrarotabsorption III. Die Systeme MgAl2O4–Al2O3 und MgAl2O4–LiAl5O8 , 1961 .