Emission of a metallic infrared emitter with hexagonal holes lattice structure
暂无分享,去创建一个
Kun Qian | Xuyuan Chen | Haisheng San | Fangqiang Li | Xuyuan Chen | H. San | Fangqiang Li | Kun Qian
[1] H. Lezec,et al. Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.
[2] H. Ahmed,et al. INFRARED ABSORPTION IN SILICON AT ELEVATED TEMPERATURES , 1996 .
[3] Z. Vardeny,et al. Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array , 2005 .
[4] Ajay Nahata,et al. Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures. , 2004, Optics express.
[5] Thomas W. Ebbesen,et al. Optical transmission properties of a single subwavelength aperture in a real metal , 2004 .
[6] R. Dasari,et al. Surface-enhanced Raman scattering and biophysics , 2001 .
[7] Si‐Chen Lee,et al. Dispersion of surface plasmon polaritons on silver film with rectangular hole arrays in a square lattice , 2006 .
[8] W. Barnes,et al. Surface plasmon subwavelength optics , 2003, Nature.
[9] P. Lalanne,et al. Microscopic theory of the extraordinary optical transmission , 2008, Nature.
[10] Irina Puscasu,et al. Extraordinary emission from two-dimensional plasmonic-photonic crystals , 2005 .
[11] E. Hutter,et al. Exploitation of Localized Surface Plasmon Resonance , 2004 .
[12] Xuyuan Chen,et al. Micro-machined infrared emitter with metallic photonic crystals structure , 2009, International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT).
[13] R. J. Bell,et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.
[14] Thomas W. Ebbesen,et al. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures , 2005 .
[15] T. Ebbesen,et al. Light in tiny holes , 2007, Nature.