APPROXIMATIONS WITH VORTICITY BOUNDS FOR THE GINZBURG–LANDAU FUNCTIONAL

We propose an approximation scheme for complex-valued functions defined on a smooth domain Ω: the approximating functions have a Ginzburg–Landau energy of the same magnitude as the initial function, but they possess moreover improved bounds on vorticity. As an application, we obtain a variant of a Jacobian estimate first established by Jerrard and Soner. This variant was conjectured by Bourgain, Brezis and Mironescu.

[1]  Y. Meyer,et al.  Compensated compactness and Hardy spaces , 1993 .

[2]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[3]  R. Jerrard Lower bounds for generalized Ginzburg-Landau functionals , 1999 .

[4]  M. G. Delgado,et al.  Optimal control and partial differential equations , 2004 .

[5]  J. Bourgain,et al.  On the structure of the Sobolev space H1/2 with values into the circle , 2000 .

[6]  Giovanni Alberti,et al.  Variational convergence for functionals of Ginzburg-Landau type. , 2005 .

[7]  J. Bourgain,et al.  Another look at Sobolev spaces , 2001 .

[8]  Tristan Rivière,et al.  Line vortices in the U(1) Higgs model , 1996 .

[9]  Etienne Sandier,et al.  Lower Bounds for the Energy of Unit Vector Fields and Applications , 1998 .

[10]  Halil Mete Soner,et al.  Limiting Behavior of the Ginzburg–Landau Functional , 2002 .

[11]  Petru Mironescu,et al.  Limiting embedding theorems forWs,p whens ↑ 1 and applications , 2002 .

[12]  Sylvia Serfaty,et al.  A rigorous derivation of a free-boundary problem arising in superconductivity , 2000 .

[13]  Halil Mete Soner,et al.  The Jacobian and the Ginzburg-Landau energy , 2002 .

[14]  F. Béthuel,et al.  On an open problem for Jacobians raised by Bourgain, Brezis and Mironescu , 2003 .

[15]  I. Shafrir,et al.  Lower bounds for the energy ofs1-valued maps in perforated domains , 1995 .

[16]  H. Fédérer Geometric Measure Theory , 1969 .

[17]  F. Béthuel,et al.  The approximation problem for Sobolev maps between two manifolds , 1991 .