APPROXIMATIONS WITH VORTICITY BOUNDS FOR THE GINZBURG–LANDAU FUNCTIONAL
暂无分享,去创建一个
[1] Y. Meyer,et al. Compensated compactness and Hardy spaces , 1993 .
[2] H. Brezis,et al. Ginzburg-Landau Vortices , 1994 .
[3] R. Jerrard. Lower bounds for generalized Ginzburg-Landau functionals , 1999 .
[4] M. G. Delgado,et al. Optimal control and partial differential equations , 2004 .
[5] J. Bourgain,et al. On the structure of the Sobolev space H1/2 with values into the circle , 2000 .
[6] Giovanni Alberti,et al. Variational convergence for functionals of Ginzburg-Landau type. , 2005 .
[7] J. Bourgain,et al. Another look at Sobolev spaces , 2001 .
[8] Tristan Rivière,et al. Line vortices in the U(1) Higgs model , 1996 .
[9] Etienne Sandier,et al. Lower Bounds for the Energy of Unit Vector Fields and Applications , 1998 .
[10] Halil Mete Soner,et al. Limiting Behavior of the Ginzburg–Landau Functional , 2002 .
[11] Petru Mironescu,et al. Limiting embedding theorems forWs,p whens ↑ 1 and applications , 2002 .
[12] Sylvia Serfaty,et al. A rigorous derivation of a free-boundary problem arising in superconductivity , 2000 .
[13] Halil Mete Soner,et al. The Jacobian and the Ginzburg-Landau energy , 2002 .
[14] F. Béthuel,et al. On an open problem for Jacobians raised by Bourgain, Brezis and Mironescu , 2003 .
[15] I. Shafrir,et al. Lower bounds for the energy ofs1-valued maps in perforated domains , 1995 .
[16] H. Fédérer. Geometric Measure Theory , 1969 .
[17] F. Béthuel,et al. The approximation problem for Sobolev maps between two manifolds , 1991 .