How to control solid state dewetting: A short review

Abstract In the past decade there have been many theoretical and experimental efforts to study the mechanisms of solid state dewetting, that means the spontaneous agglomeration of a thin solid film on a substrate into an assembly of 3D islands. The dewetting studies of solid films on solid substrates have not yet reached the degree of maturity achieved for liquids but there is now enough experimental data to consider the possibility of a future “dewetting engineering”. By dewetting engineering we mean all the ways to tune and/or control the kinetics of dewetting as well as the morphology of the final dewetted state. The ultimate goal is to avoid dewetting when it complicates the fabrication of thin film-based devices or to use it for the spontaneous production of an assembly of nanoscaled islands on solid substrates. For this purpose we review the different parameters that influence the dewetting then illustrate how the dewetted state may be tuned by varying the thickness of the film, the annealing temperature, or the state of strain in the film. Moreover, adsorbed or absorbed species (by deposition or ionic impingement/ion bombardment) may modify the surface properties of the film or the mobility properties of the contact line film/substrate and thus the dewetting properties. Anisotropic properties of the film may also be used to initiate the dewetting from perfectly oriented edge fronts, leading to highly ordered 3D islands. New approaches using substrate pre-patterning or film patterning are very promising to achieve the dewetting engineering. Ideal systems for studying solid state dewetting are single crystalline films deposited or bonded on amorphous substrates, so that, among the numerous dewetting systems reported in the literature, ultra-thin crystalline silicon-on-insulator (SOI) film (a Si film bonded on an amorphous SiO2 substrate) is considered as a model system for studying how to control solid state dewetting. Other systems, as Ni epitaxially grown on MgO, are also used to illustrate the different approaches for a “dewetting engineering”.

[1]  K. Oura,et al.  LEED-AES study of the AuSi(100) system , 1979 .

[2]  Eshel Ben-Jacob,et al.  Morphology transitions during non-equilibrium growth: II. Morphology diagram and characterization of the transition , 1992 .

[3]  E. Rabkin,et al.  Mechanisms of solid-state dewetting of thin Au films in different annealing atmospheres , 2015 .

[4]  H. Minoda,et al.  In-situ study of gold-induced surface structures and step rearrangements on the Si(001) surface by high-temperature STM , 1998 .

[5]  J. Evans,et al.  The annealing of helium-induced cavities in silicon and the inhibiting role of oxygen , 1987 .

[6]  Eugen Rabkin,et al.  Mechano-stimulated equilibration of gold nanoparticles on sapphire , 2015 .

[7]  Carl V. Thompson,et al.  Regular pattern formation through the retraction and pinch-off of edges during solid-state dewetting of patterned single crystal films , 2010 .

[8]  E. Bauer,et al.  GIANT FACETING OF VICINAL Si(001) INDUCED BY Au ADSORPTION , 1998 .

[9]  M. Lagally,et al.  Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator , 2009 .

[10]  G. Davı̀,et al.  Growth and dewetting of gold on Si(1 1 1) investigated in situ by grazing incidence small angle x-ray scattering , 2012 .

[11]  Emmanuel Augendre,et al.  Challenges and Progress in Germanium-on-Insulator Materials and Device Development towards ULSI Integration , 2009 .

[12]  J. Roth,et al.  Epitaxial Regrowth of Ar-Implanted Amorphous Silicon , 1978 .

[13]  H. Takeuchi,et al.  Graphoepitaxy of platinum on Sawtooth profile gratings , 1986 .

[14]  Ezra Bussmann,et al.  Dynamics of solid thin-film dewetting in the silicon-on-insulator system , 2011 .

[15]  T. Seidel,et al.  Comparative study of annealed neon‐, argon‐, and krypton‐ion implantation damage in silicon , 1978 .

[16]  Amanda L. Giermann Templated dewetting of thin solid films , 2009 .

[17]  Samuel A. Safran,et al.  Capillary instabilities in thin films. I. Energetics , 1986 .

[18]  Robert Weiss,et al.  Spinodal Dewetting of Thin Polymer Films , 1998 .

[19]  H. Minoda,et al.  Surface morphology of Au-adsorbed Si(001) vicinal surfaces studied by reflection electron microscopy , 1999 .

[20]  E. Rabkin,et al.  Solid state dewetting and stress relaxation in a thin single crystalline Ni film on sapphire , 2014 .

[21]  Carl V. Thompson,et al.  Solid-State Dewetting of Thin Films , 2012 .

[22]  The influence of strain on dewetting of silicon films , 2013 .

[23]  S. Peripolli,et al.  Damage accumulation in neon implanted silicon , 2006 .

[24]  B. Yang,et al.  Stability of strained thin films with interface misfit dislocations: A multiscale computational study , 2010 .

[25]  Benjamin Vial,et al.  Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting. , 2014, ACS nano.

[26]  F. M. Z. Heringdorf,et al.  Formation of hill and valley structures on Si(001) vicinal surfaces studied by spot-profile-analyzing LEED , 2000 .

[27]  Michael J. Miksis,et al.  Periodic mass shedding of a retracting solid film step , 2000 .

[28]  A. Chame,et al.  Dewetting of a solid monolayer. , 2007, Physical review letters.

[29]  Zhenqiang Ma,et al.  Photodetector based on networks of carbon nanotubes on decomposed SOI , 2005, Photonics North.

[30]  C. Thompson,et al.  Cobalt nanoparticle arrays made by templated solid-state dewetting. , 2009, Small.

[31]  B. Gates,et al.  Metal Clusters in Catalysis , 1986 .

[32]  P. Müller,et al.  Equilibrium nano-shape changes induced by epitaxial stress (generalised Wulf-Kaishew theorem) , 2000 .

[33]  E. Sutter,et al.  Assembly of Ge nanocrystals on SiO2 via a stress-induced dewetting process , 2006 .

[34]  O. Faynot,et al.  Agglomeration control during the selective epitaxial growth of Si raised sources and drains on ultra-thin silicon-on-insulator substrates , 2005 .

[35]  S. Donnelly,et al.  Solid-phase epitaxial regrowth of amorphous silicon containing helium bubbles , 2008 .

[36]  M. H. Hoegen Adsorption induced giant faceting of vicinal Si(001) , 1998 .

[37]  F. Himpsel,et al.  Linear arrays of CaF2 nanostructures on Si , 1999 .

[38]  James R Engstrom,et al.  The reaction of atomic oxygen with Si(100) and Si(111): I. Oxide decomposition, active oxidation and the transition to passive oxidation , 1991 .

[39]  Harris Wong,et al.  Fingering instability of a retracting solid film edge , 2005 .

[40]  G. Capellini,et al.  Agglomeration process in thin silicon-, strained silicon-, and silicon germanium-on-insulator substrates , 2009 .

[41]  Thermal instability of silicon-on-insulator thin films measured by low-energy electron microscopy , 2010 .

[42]  John W. Cahn,et al.  Stability of rods with anisotropic surface free energy , 1979 .

[43]  Ikeda,et al.  Photoemission from small palladium clusters supported on various substrates. , 1986, Physical review. B, Condensed matter.

[44]  A. Saúl,et al.  Elastic effects on surface physics , 2004 .

[45]  P. Müller,et al.  Equilibrium nano-shape change induced by epitaxial stress: effect of surface stress , 2000 .

[46]  E. Rabkin,et al.  Anisotropic hole growth during solid-state dewetting of single-crystal Au–Fe thin films , 2012 .

[47]  I. Berbezier,et al.  Ordered arrays of Au catalysts by FIB assisted heterogeneous dewetting , 2015, Nanotechnology.

[48]  M. Tabe,et al.  Thermal Agglomeration of Ultrathin Silicon-on-Insulator Layers: Crystalline Orientation Dependence , 2008 .

[49]  Carl V. Thompson,et al.  Solid-state dewetting of patterned thin films , 2009 .

[50]  Jongpil Ye Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting , 2015, Scientific Reports.

[51]  M. Tabe,et al.  Effect of patterning on thermal agglomeration of ultrathin silicon-on-insulator layer , 2002 .

[52]  Y. Zabila,et al.  Ordered FePdCu nanoisland arrays made by templated solid-state dewetting , 2015, Nanotechnology.

[53]  Sorin Cristoloveanu,et al.  Frontiers of silicon-on-insulator , 2003 .

[54]  Yasuhiko Ishikawa,et al.  Thermal agglomeration of single-crystalline Si layer on buried SiO2 in ultrahigh vacuum , 2002 .

[55]  N. Rösch,et al.  Supported nickel and copper clusters on MgO(100): A first‐principles calculation on the metal/oxide interface , 1996 .

[56]  A. Chame,et al.  Dewetting of ultrathin solid films. , 2009, Physical review letters.

[57]  F. Leroy,et al.  Dewetting dynamics of silicon-on-insulator thin films , 2011 .

[58]  Michael J. Miksis,et al.  Capillary instabilities in solid thin films: Lines , 1996 .

[59]  I. Berbezier,et al.  Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting. , 2016, Nanoscale.

[60]  W. Mullins Theory of Thermal Grooving , 1957 .

[61]  J. Taylor,et al.  Overview No. 98 I—Geometric models of crystal growth , 1992 .

[62]  X. B. Zhang,et al.  Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst , 2005 .

[63]  F. Leroy,et al.  Oxygen-induced inhibition of silicon-on-insulator dewetting , 2014 .

[64]  A. Locatelli,et al.  Morphology and composition of Au catalysts on Ge(111) obtained by thermal dewetting , 2011 .

[65]  Solid-state wetting on nanopatterned substrates , 2013 .

[66]  Yasuhiko Ishikawa,et al.  Pattern-induced alignment of silicon islands on buried oxide layer of silicon-on-insulator structure , 2003 .

[67]  A. Chame,et al.  Atomic step motion during the dewetting of ultra-thin films , 2010, 1002.3796.

[68]  S. G. Mayr,et al.  Dewetting of Ni and NiAg solid thin films and formation of nanowires on ripple patterned substrates , 2008 .

[69]  N. G. Chew,et al.  Tem Study Of Silicon Laser Annealed After The Implantation Of Low Solubility Dopants , 1980 .

[70]  O Pierre-Louis,et al.  Anisotropy and coarsening in the instability of solid dewetting fronts. , 2011, Physical review letters.

[71]  L. Marqués,et al.  Atomistic analysis of the annealing behavior of amorphous regions in silicon , 2007 .

[72]  T. Tada,et al.  Properties of three-dimensional structures prepared by Ge dewetting from Si(111) at high temperatures , 2015 .

[73]  D. Barge,et al.  Low thermal budget for Si and SiGe surface preparation for FD-SOI technology , 2016 .

[74]  L. Gauckler,et al.  Agglomeration of Pt thin films on dielectric substrates , 2010 .

[75]  H. Sunamura,et al.  Observation of lateral confinement effect in Ge quantum wires self‐aligned at step edges on Si(100) , 1996 .

[76]  Tae-Sik Yoon,et al.  Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide , 2003 .

[77]  D. Mariolle,et al.  Engineering the size and density of silicon agglomerates by controlling the initial surface carbonated contamination , 2013 .

[78]  V. Senez,et al.  Formation of silicon islands on a silicon on insulator substrate upon thermal annealing , 2000 .

[79]  M. Kageshima,et al.  Study of Au-induced reconstruction on Si(001) surface by scanning tunneling microscopy and low energy electron diffraction , 2001 .

[80]  S. Kodambaka,et al.  Germanium Nanowire Growth Below the Eutectic Temperature , 2007, Science.

[81]  J. Taylor,et al.  Shape evolution by surface diffusion and surface attachment limited kinetics on completely faceted surfaces , 1995 .

[82]  M. Tabe,et al.  Formation and ordering of self-assembled Si islands by ultrahigh vacuum annealing of ultrathin bonded silicon-on-insulator structure , 2000 .

[83]  F. Leroy,et al.  Dynamics and instability of solid-state dewetting , 2013 .

[84]  J. C. Hamilton,et al.  How metal films de-wet substrates—identifying the kinetic pathways and energetic driving forces , 2009, 0904.1037.

[85]  A. Chame,et al.  Modeling dewetting of ultra-thin solid films , 2013 .

[86]  P. Zahl,et al.  Au induced regular ordered striped domain wall structure of a (5×3) reconstruction on Si(001) studied by STM and SPA-LEED , 2000 .

[87]  G. Kellogg,et al.  Role of thermal processes in dewetting of epitaxial Ag(111) film on Si(111) , 2014 .

[88]  Jian-wen Wang,et al.  Hierarchically porous cobalt oxyhydroxide derived from Morpho‐butterfly wings: Preparation, characterization, and carbon monoxide detection at low temperatures , 2013 .

[89]  S. Dhesi,et al.  Chromium nanostructures formed by dewetting of heteroepitaxial films on W(100) , 2012 .

[90]  Carl V. Thompson,et al.  Capillary instabilities in thin films , 1990 .

[91]  D. Mitlin,et al.  Solid-state dewetting mechanisms of ultrathin Ni films revealed by combining in situ time resolved differential reflectometry monitoring and atomic force microscopy , 2010 .

[92]  W. Craig Carter,et al.  Quantitative analysis of anisotropic edge retraction by solid-state dewetting of thin single crystal films , 2013 .

[93]  H. Ryssel,et al.  Limitations of focused ion beam nanomachining , 2001 .

[94]  D. Mariolle,et al.  Controlled synthesis of SiC nanoparticles from surface silicon contamination , 2013 .

[95]  M. Drechsler,et al.  A measurement of the surface energy anisotropy of nickel by transmission electron microscopy of field emitter crystals , 1984 .

[96]  Y. Bogumilowicz,et al.  Engineering strained silicon on insulator wafers with the Smart CutTM technology , 2004 .

[97]  C. Thompson,et al.  Solid-state dewetting for ordered arrays of crystallographically oriented metal particles , 2005 .

[98]  Agglomeration dynamics of germanium islands on a silicon oxide substrate: A grazing incidence small-angle x-ray scattering study , 2013 .

[99]  J. Roth,et al.  Epitaxial regrowth of Ne‐ and Kr‐implanted amorphous silicon , 1978 .

[100]  R. Elliman,et al.  Ion-beam-induced crystallization and amorphization of silicon , 1987 .

[101]  N. Bartelt,et al.  Crucial role of substrate steps in de-wetting of crystalline thin films [rapid communication] , 2004 .

[102]  N. Takezawa,et al.  Methanation of carbon dioxide: preparation of Ni/MgO catalysts and their performance , 1986 .

[103]  Jurgen Michel,et al.  Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration , 2006 .

[104]  Carl V. Thompson,et al.  Capillary instabilities in thin, continuous films , 1992 .

[105]  V. Korobtsov,et al.  Solid phase epitaxial growth anisotropy of vacuum‐deposited amorphous silicon , 1984 .

[106]  E. Bauer Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I , 1958 .

[107]  P. Müller,et al.  Surface melting of nanoscopic epitaxial films , 2007 .

[108]  V. Senez,et al.  Thermally assisted formation of silicon islands on a silicon-on-insulator substrate , 2002 .

[109]  Tersoff,et al.  Shape transition in growth of strained islands: Spontaneous formation of quantum wires. , 1993, Physical review letters.

[110]  H. Guesmi,et al.  Coverage dependence of Sb/Si(111) adsorption and desorption modes: Interplay between chemical interactions and site transitions , 2008 .

[111]  Samuel A. Safran,et al.  Capillary instabilities in thin films. II. Kinetics , 1986 .

[112]  P. Schweizer,et al.  The process of solid-state dewetting of Au thin films studied by in situ scanning transmission electron microscopy , 2015 .

[113]  C. Thompson,et al.  Three-dimensional graphoepitaxial alignment resulting from solid-state dewetting of Au films on surfaces with monoperiodic topography , 2012 .

[114]  W. Carter,et al.  A model for solid-state dewetting of a fully-faceted thin film , 2013 .

[115]  Erwan Dornel,et al.  Surface diffusion dewetting of thin solid films: Numerical method and application to Si/SiO 2 , 2006 .

[116]  I. Robinson,et al.  Critical thickness for the agglomeration of thin metal films , 2009 .

[117]  C. B. Carter,et al.  Nanopatterning by solid-state dewetting on reconstructed ceramic surfaces , 2009 .

[118]  S. Neretina,et al.  The templated assembly of highly faceted three-dimensional gold microstructures into periodic arrays , 2012 .

[119]  C. Thompson,et al.  Effect of surface energy anisotropy on Rayleigh-like solid-state dewetting and nanowire stability , 2015 .

[120]  J. Nogami,et al.  Gold-induced reconstructions of the Si(001) surface: The 5×3 and √26 ×3 phases , 1993 .

[121]  E. Williams,et al.  Dewetting dynamics of ultrathin silver films on Si(111) , 2003 .

[122]  I. Berbezier,et al.  Design of free patterns of nanocrystals with ad hoc features via templated dewetting , 2012 .

[123]  Harald Ibach,et al.  The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures , 1997 .

[124]  Lourdes Pelaz,et al.  Ion-beam-induced amorphization and recrystallization in silicon , 2004 .

[125]  I. Robinson,et al.  In situ study of the dewetting behavior of Ni-films on oxidized Si(001) by GISAXS , 2007 .

[126]  R. Shimizu,et al.  Numerical Study on Shape Transformation of Silicon Trenches by High-Temperature Hydrogen Annealing , 2004 .

[127]  Gage Martin,et al.  Kinetics and mechanisms of reactive solid state dewetting in the system Ag–Ni–O , 2001 .

[128]  M. Topič,et al.  Solid-state dewetting of continuous thin platinum coatings , 2015 .

[129]  B. Spencer,et al.  Thin-Film Evolution Equation for a Strained Solid Film on a Deformable Substrate: Numerical Steady States , 2007 .

[130]  Carl V. Thompson,et al.  Anisotropic edge retraction and hole growth during solid-state dewetting of single crystal nickel thin films , 2011 .

[131]  F. Leroy,et al.  Surface diffusion of Au on 3×3 Si(111)–Au studied by nucleation-rate and Ostwald-ripening analysis , 2016 .

[132]  J. Penuelas,et al.  Growth of vertical and defect free InP nanowires on SrTiO3(001) substrate and comparison with growth on silicon , 2012 .

[133]  F. Cheynis,et al.  Dynamics, anisotropy, and stability of silicon-on-insulator dewetting fronts , 2012 .