Broadband athermal waveguides and devices for datacom and telecom applications

The high temperature sensitivity of silicon material limits the applications of silicon-based micro-ring resonators in integrated photonics. To realize a low but broadband temperature-dependence-wavelength-shift (TDWS) micro-ring resonator, designing a broadband athermal waveguide becomes a significant task. In this work, we propose a broadband athermal waveguide which shows a low effective thermos-optical coefficient (TOC) of ±1×10-6/K at 1400 nm to 1700 nm. The proposed waveguide shows low-loss performance of 0.01 dB/cm and stable broadband-athermal ability when it’s applied in micro-ring resonators, and the optical loss of micro-ring resonator with a radius of 100 μm using this waveguide is 0.02 dB/cm.

[1]  Gerry White,et al.  The Past , 2000 .

[2]  A. Arbabi,et al.  Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances. , 2013, Optics letters.

[3]  M. Lipson,et al.  CMOS-compatible athermal silicon microring resonators. , 2009, Optics express.

[4]  S. J. B. Yoo,et al.  Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation , 2009 .

[5]  K. Bergman,et al.  Thermal stabilization of a microring modulator using feedback control. , 2012, Optics express.

[6]  Michal Lipson,et al.  Athermal silicon microring resonators with titanium oxide cladding. , 2013, Optics express.

[7]  Qianfan Xu,et al.  Silicon microring resonators with 1.5-microm radius. , 2008, Optics express.

[8]  Juthika Basak,et al.  CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. , 2013, Optics express.

[9]  Gyungock Kim,et al.  Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer , 2007, Journal of Lightwave Technology.

[10]  Shiyoshi Yokoyama,et al.  Athermal and High-Q Hybrid TiO2–Si3N4 Ring Resonator via an Etching-Free Fabrication Technique , 2015 .

[11]  Ali Adibi,et al.  Athermal performance in high-Q polymer-clad silicon microdisk resonators. , 2010, Optics letters.

[12]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  Nikolaos K. Uzunoglu,et al.  Photonic Microresonator Research and Applications , 2010 .

[14]  H. Thacker,et al.  25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning. , 2011, Optics express.

[15]  Geert Morthier,et al.  Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. , 2009, Optics express.

[16]  Feng Yu,et al.  Complementary metal-oxide-semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators , 2013 .

[17]  H. Haus,et al.  Microring resonator channel dropping filters , 1997 .

[18]  W. Marsden I and J , 2012 .

[19]  H. Trieu,et al.  Athermal and wavelength-trimmable photonic filters based on TiO₂-cladded amorphous-SOI. , 2015, Optics express.

[20]  Michal Lipson,et al.  Athermal silicon microring electro-optic modulator. , 2012, Optics letters.

[21]  Yasuo Kokubun,et al.  Temperature-independent optical filter at 1.55 /spl mu/m wavelength using a silica-based athermal waveguide , 1998 .

[23]  Randolph Kirchain,et al.  A roadmap for nanophotonics , 2007 .

[24]  J. Michel,et al.  Athermal High-Index-Contrast Waveguide Design , 2008, IEEE Photonics Technology Letters.

[25]  J. Michel,et al.  Athermal operation of silicon waveguides: spectral, second order and footprint dependencies. , 2010, Optics express.

[26]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[27]  Jock Trevor Bovington Athermal Laser Designs on Si and Heterogeneous III-V/Si 3N4 Integration , 2014 .