HELIUM AND NEON ISOTOPES IN THE IMNAHA BASALT, COLUMBIA RIVER BASALT GROUP: EVIDENCE FOR A YELLOWSTONE PLUME SOURCE

Abstract Helium, neon, and argon isotopic compositions were measured in two flows of the Columbia River flood basalt. The Imnaha Basalt has a 3 He/ 4 He ratio of 11.4 times atmospheric and 20 Ne/ 22 Ne and 21 Ne/ 22 Ne ratios characteristic of a plume component. The measured 3 He/ 4 He is a lower limit, due to possible preferential 3 He loss and/or addition of radiogenic 4 He. A Wanapum Basalt flow, erupted approximately 2 Ma later in the waning stages of volcanism, has more MORB-like noble gases. The He, Nd and Sr isotopic compositions of these lavas suggest that the Columbia River basalts were derived from the Yellowstone plume head which contained both ‘high-helium’ plume material and entrained depleted mantle. As the eruptions progressed the plume component in the melting region was gradually diluted or replaced.

[1]  R. Kistler,et al.  Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks , 1978 .

[2]  M. Kurz Cosmogenic helium in a terrestrial igneous rock , 1986, Nature.

[3]  T. Staudacher,et al.  Neon isotopes in submarine basalts , 1988 .

[4]  S. Humphris,et al.  Helium isotope geochemistry of mid-ocean ridge basalts from the South Atlantic , 1992 .

[5]  I. Mcdougall,et al.  Noble gases in submarine pillow basalt glasses from the Lau Basin: detection of a solar component in backarc basin basalts , 1993 .

[6]  S. Humphris,et al.  Helium isotope geochemistry of some volcanic rocks from Saint Helena , 1992 .

[7]  R. Poreda,et al.  Cosmogenic neon in recent lavas from the western United States , 1992 .

[8]  C. Hawkesworth,et al.  Isotopic and Geochemical Constraints on the Origin and Evolution of the Columbia River Basalt , 1993 .

[9]  I. Mcdougall Geochemistry and origin of basalt of the Columbia River Group, Oregon and Washington , 1976 .

[10]  J. Lupton,et al.  Primordial neon, helium, and hydrogen in oceanic basalts , 1976 .

[11]  M. Richards,et al.  Hotspots, mantle plumes, flood basalts, and true polar wander , 1991 .

[12]  D. DePaolo Neodymium Isotope Geochemistry: An Introduction , 1988 .

[13]  J. Lupton,et al.  Helium isotope ratios in Yellowstone and Lassen Park volcanic gases , 1978 .

[14]  Structures, textures, and cooling histories of Columbia River basalt flows , 1986 .

[15]  M. Kurz,et al.  Experimental measurements of 3He and 4He mobility in olivine and clinopyroxene at magmatic temperatures , 1993 .

[16]  C. Hart,et al.  Yellowstone in Yukon: The Late Cretaceous Carmacks Group , 1996 .

[17]  Donald A. Swanson,et al.  Revisions to the estimates of the areal extent and volume of the Columbia River Basalt Group , 1989 .

[18]  R. Lambert,et al.  Lead isotopes and the sources of the Columbia River Basalt Group , 1994 .

[19]  P. Renne,et al.  Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts , 1993, Science.

[20]  B. M. Kennedy,et al.  Intensive sampling of noble gases in fluids at Yellowstone: I. Early overview of the data; regional patterns , 1985 .

[21]  A. Baksi Reevaluation of the timing and duration of extrusion of the Imnaha, Picture Gorge, and Grande Ronde Basalts, Columbia River Basalt Group , 1989 .

[22]  B. M. Kennedy,et al.  Noble gases in CH4-rich gas fields, Alberta, Canada , 1992 .

[23]  Mark A. Richards,et al.  Origin of the Columbia Plateau and Snake River plain: Deflection of the Yellowstone plume , 1993 .

[24]  Thomas W. Trull,et al.  C-He systematics in hotspot xenoliths: implications for mantle carbon contents and carbon recycling , 1993 .

[25]  Frank A. Podosek,et al.  Noble Gas Geochemistry: Noble Gases in the Earth , 1984 .

[26]  M. Kurz,et al.  Helium isotopic systematics of oceanic islands and mantle heterogeneity , 1982, Nature.

[27]  C. R. Knowles,et al.  Imnaha Basalt, Columbia River Basalt Group , 1984 .

[28]  D. L. Anderson,et al.  An alternative mechanism of flood basalt formation , 1995 .

[29]  A. Smith Back-arc convection model for Columbia river basalt genesis , 1992 .

[30]  S. Reidel Continental flood basalts , 1991 .

[31]  F. Richter,et al.  The 40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes , 1989 .

[32]  M. Kurz,et al.  Helium isotopic evolution of Mauna Kea Volcano: First results from the 1‐km drill core , 1996 .

[33]  D. Clague,et al.  Possible solar noble-gas component in Hawaiian basalts , 1991, Nature.

[34]  B. M. Kennedy,et al.  Crustal neon: a striking uniformity , 1990 .

[35]  P. M. Jeffery,et al.  Improved charcoal trap for rare gas mass spectrometry. , 1978, The Review of scientific instruments.

[36]  A. Brandon,et al.  Assessing subcontinental lithospheric mantle sources for basalts: Neogene volcanism in the Pacific Northwest, USA as a test case , 1995 .

[37]  W. Peltier Mantle convection : plate tectonics and global dynamics , 1989 .

[38]  R. Carlson,et al.  Flood Basalt Volcanism in the Northwestern United States , 1988 .

[39]  Walter D. Mooney,et al.  Crustal structure of the Columbia Plateau: Evidence for continental rifting , 1988 .

[40]  V. Camp Mid-Miocene propagation of the Yellowstone mantle plume head beneath the Columbia River basalt source region , 1995 .

[41]  P. Hooper The Columbia River Basalt , 1988 .

[42]  A. Cohen,et al.  Isotopic relationships of volatile and lithophile trace elements in continental ultramafic xenoliths , 1992 .

[43]  I. Mcdougall,et al.  Solar noble gases in the Earth: The systematics of helium-neon isotopes in mantle derived samples , 1993 .

[44]  P. Renne,et al.  High-3He Plume Origin and Temporal-Spatial Evolution of the Siberian Flood Basalts , 1995, Science.