A potential-free field inverse Schrödinger problem: optimal error bound analysis and regularization method

In this paper, an inverse Schrödinger problem of potential-free field is studied. This problem is ill-posed, i.e. the solution (if it exists) does not depend continuously on the data. Based on an a priori assumption, the optimal errorbound analysis is given. Moreover, two different regularization methods are used to solve this problem, respectively. Under an a priori and an a posteriori regularization parameters choice rule, the convergent error estimates are all obtained. Compared with Landweber iterative regularization method, the convergent estimate between the exact solution and the regularization solution obtained by a modified kernel method is optimal for the priori regularization parameter choice rule, and the posteriori error estimate is order-optimal. Finally, some numerical examples are given to illustrate the effectiveness, stability and superiority of these methods.

[1]  Ameneh Taleei,et al.  Time-splitting pseudo-spectral domain decomposition method for the soliton solutions of the one- and multi-dimensional nonlinear Schrödinger equations , 2014, Comput. Phys. Commun..

[2]  Gennadi Vainikko,et al.  On the Optimality of Methods for Ill-Posed Problems , 1987 .

[3]  R. Gorenflo,et al.  On Optimal Regularization Methods for Fractional Differentiation , 1999 .

[4]  Fan Yang,et al.  The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation , 2015 .

[5]  Alper Korkmaz,et al.  A differential quadrature algorithm for nonlinear Schrödinger equation , 2009 .

[6]  Bound state solutions of square root power law potential--Wavefunction ansatz method on $D$-dimensional Schr\"odinger equation , 2015, 1503.07517.

[7]  Fan Yang,et al.  A mollification regularization method for unknown source in time-fractional diffusion equation , 2014, Int. J. Comput. Math..

[8]  Fan Yang,et al.  The Truncation Regularization Method for Identifying the Initial Value on Non-Homogeneous Time-Fractional Diffusion-Wave Equations , 2019, Mathematics.

[9]  A modified kernel method for numerical analytic continuation , 2013 .

[10]  O. Yu. Imanuvilov,et al.  Inverse Boundary Value Problem for Schrödinger Equation in Two Dimensions , 2011, SIAM J. Math. Anal..

[11]  Athanassios G. Bratsos,et al.  A discrete Adomian decomposition method for discrete nonlinear Schrödinger equations , 2008, Appl. Math. Comput..

[12]  Fan Yang,et al.  The quasi-boundary value method for identifying the initial value of heat equation on a columnar symmetric domain , 2018, Numerical Algorithms.

[13]  Ulrich Tautenhahn,et al.  Optimality for ill-posed problems under general source conditions , 1998 .

[14]  T. Wei,et al.  A quasi-reversibility regularization method for the Cauchy problem of the Helmholtz equation , 2011, Int. J. Comput. Math..

[15]  Nasser Hassan Sweilam,et al.  Variational iteration method for solving cubic nonlinear Schrödinger equation , 2007 .

[16]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[17]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[18]  C. Cari,et al.  Relativistic energy analysis for D-Dimensional Dirac equation with Eckart plus Hulthen central potential coupled by modified Yukawa tensor potential using Romanovski polynomial method , 2016 .

[19]  Infinitely many solutions for a class of fourth-order partially sublinear elliptic problem , 2017 .

[20]  LETTER TO THE EDITOR: The global uniqueness for determining two convection coefficients from Dirichlet to Neumann map in two dimensions , 2000 .

[21]  İdris Dağ,et al.  A quadratic B-spline finite element method for solving nonlinear Schrödinger equation , 1999 .

[22]  Fan Yang,et al.  Landweber iterative regularization method for identifying the unknown source of the modified Helmholtz equation , 2017 .

[23]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[24]  Chu-Li Fu,et al.  Optimal error bound and Fourier regularization for identifying an unknown source in the heat equation , 2009 .

[25]  Global stability for the multi-channel Gelʼfand–Calderón inverse problem in two dimensions , 2011, 1102.5175.

[26]  A. G. Bratsos A linearized finite-difference scheme for the numerical solution of the nonlinear cubic Schrödinger equation , 2001 .

[27]  Exact solutions of the Schrödinger equation with non-central potential by the Nikiforov–Uvarov method , 2004, quant-ph/0410144.

[28]  Fan Yang,et al.  Fourier Truncation Regularization Method for a Three-Dimensional Cauchy Problem of the Modified Helmholtz Equation with Perturbed Wave Number , 2019, Mathematics.

[29]  Fan Yang,et al.  Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation , 2019, Numerical Algorithms.

[30]  Fan Yang,et al.  An a posteriori Fourier regularization method for identifying the unknown source of the space-fractional diffusion equation , 2014 .

[31]  F. Chand,et al.  Asymptotic Study to the N-Dimensional Radial Schrödinger Equation for the Quark-Antiquark System , 2013 .

[32]  Fan Yang,et al.  IDENTIFYING AN UNKNOWN SOURCE IN SPACE-FRACTIONAL DIFFUSION EQUATION , 2014 .

[33]  Bin Lin Parametric cubic spline method for the solution of the nonlinear Schrödinger equation , 2013, Comput. Phys. Commun..

[34]  Fan Yang,et al.  The truncation method for the Cauchy problem of the inhomogeneous Helmholtz equation , 2019 .

[35]  Masahiro Yamamoto,et al.  Inverse boundary value problem for linear Schr\"odinger equation in two dimensions , 2012, 1208.3775.

[36]  Rakesh,et al.  Uniqueness for an inverse problem for the wave equation , 1988 .

[37]  U. Tautenhahn,et al.  Optimal stable approximations for the sideways heat equation , 1997 .

[38]  Fan Yang,et al.  Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinear Source , 2019, Mathematics.

[39]  A. Bukhgeǐm,et al.  Recovering a potential from Cauchy data in the two-dimensional case , 2008 .

[40]  S. Dong On the Solutions of the Schrödinger Equation with some Anharmonic Potentials: Wave Function Ansatz , 2002 .

[41]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[42]  Jörg Baumgartl,et al.  Optically mediated particle clearing using Airy wavepackets , 2008 .

[43]  Xiao-Xiao Li,et al.  A quasi-boundary regularization method for identifying the initial value of time-fractional diffusion equation on spherically symmetric domain , 2019, Journal of Inverse and Ill-posed Problems.

[44]  M. Ivanchov The inverse problem of determining the heat source power for a parabolic equation under arbitrary boundary conditions , 1998 .

[45]  Fan Yang,et al.  Landweber iteration regularization method for identifying unknown source on a columnar symmetric domain , 2018 .

[46]  Xiang-Tuan Xiong,et al.  Fourier regularization method of a sideways heat equation for determining surface heat flux , 2006 .

[47]  U. Tautenhahn,et al.  On the Optimality of Regularization Methods for Solving Linear Ill-Posed Problems , 1994 .

[48]  T. Das Analytical approximate bound state solution of Schrödinger equation in D-dimensions with a new mixed class of potential for arbitrary ℓ-state via asymptotic iteration method , 2016, 1610.04225.

[49]  M. Naber Time fractional Schrödinger equation , 2004, math-ph/0410028.

[50]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[51]  Ting Wei,et al.  Tikhonov regularization method for a backward problem for the time-fractional diffusion equation , 2013 .

[52]  Xiaoyi Guo,et al.  Some physical applications of fractional Schrödinger equation , 2006 .

[53]  Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov–Bohm effect , 2006, math/0611342.

[54]  Determination of coefficients for a dissipative wave equation via boundary measurements , 2005 .

[55]  M. Ramadan,et al.  Numerical studies of the cubic non-linear Schrodinger equation , 2012 .

[56]  A quintic B-spline finite-element method for solving the nonlinear Schrödinger equation , 2012 .

[57]  Lars Eldén,et al.  Solving a Cauchy problem for a 3D elliptic PDE with variable coefficients by a quasi-boundary-value method , 2014 .

[58]  M. Ventra,et al.  Differential equations and factorization property for the one-dimensional Schrodinger equation with position-dependent mass , 1995 .