On some impulsive fractional differential equations in Banach spaces

This paper deals with some impulsive fractional differential equations in Banach spaces. Utilizing the Leray-Schauder fixed point theorem and the impulsive nonlinear singular version of the Gronwall inequality, the existence of \(PC\)-mild solutions for some fractional differential equations with impulses are obtained under some easily checked conditions. At last, an example is given for demonstration.

[1]  N. U. Ahmed,et al.  Optimal feedback control for impulsive systems on the space of finitely additive measures , 2007, Publicationes Mathematicae Debrecen.

[2]  N. Tatar An impulsive nonlinear singular version of the Gronwall-Bihari inequality , 2006 .

[3]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[4]  Alan D. Freed,et al.  On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity , 1999 .

[5]  Wei Wei,et al.  Solution bundle for a class of impulsive differential inclusions on Banach spaces , 2007 .

[6]  JinRong Wang,et al.  Periodic solutions of semilinear impulsive periodic system on Banach space , 2009 .

[7]  Francesco Mainardi,et al.  Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.

[8]  J. Nieto,et al.  Existence of Solutions for Impulsive Neutral Integro-Differential Inclusions with Nonlocal Initial Conditions via Fractional Operators , 2009 .

[9]  Wei Wei,et al.  Optimal Feedback Control for a Class of Nonlinear Impulsive Evolution Equations , 2006 .

[10]  Shouchuan Hu,et al.  Handbook of multivalued analysis , 1997 .

[11]  L. Gaul,et al.  Damping description involving fractional operators , 1991 .

[12]  T F Nonnenmacher,et al.  A fractional calculus approach to self-similar protein dynamics. , 1995, Biophysical journal.

[13]  Gisèle M. Mophou,et al.  Mild solutions for semilinear fractional differential equations. , 2009 .

[14]  Y. Peng,et al.  Optimal Feedback Control for a Class of Strongly Nonlinear Impulsive Evolution Equations , 2006, Comput. Math. Appl..

[15]  Jin Liang,et al.  Nonlocal impulsive problems for nonlinear differential equations in Banach spaces , 2009, Math. Comput. Model..

[16]  Mahmoud M. El-Borai,et al.  Evolution equations without semigroups , 2004, Appl. Math. Comput..

[17]  V. Lakshmikantham,et al.  Theory of fractional functional differential equations , 2008 .

[18]  I. Podlubny Fractional differential equations , 1998 .

[19]  Wei Wei,et al.  A class of nonlinear integrodifferential impulsive periodic systems of mixed type and optimal controls on Banach space , 2010 .

[20]  G. N’Guérékata,et al.  Existence of the mild solution for some fractional differential equations with nonlocal conditions , 2009 .

[21]  Existence and Global Asymptotical Stability of Periodic Solution for the -Periodic Logistic System with Time-Varying Generating Operators and -Periodic Impulsive Perturbations on Banach Spaces , 2008 .

[22]  JinRong Wang,et al.  NONLOCAL IMPULSIVE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH TIME-VARYING GENERATING OPERATORS IN BANACH SPACES , 2010 .

[23]  S. Kiruthika,et al.  EXISTENCE OF SOLUTIONS OF ABSTRACT FRACTIONAL IMPULSIVE SEMILINEAR EVOLUTION EQUATIONS , 2010 .

[24]  N. U. Ahmed,et al.  Existence of Optimal Controls for a General Class of Impulsive Systems on Banach Spaces , 2003, SIAM J. Control. Optim..

[25]  X. Xiang,et al.  Nonlinear impulsive integro-differential equations of mixed type and optimal controls , 2006 .

[26]  V. Lakshmikantham,et al.  Basic theory of fractional differential equations , 2008 .

[27]  M. Benchohra,et al.  Multiple solutions for impulsive semilinear functional and neutral functional differential equations in Hilbert space , 2005 .

[28]  N. Ahmed OPTIMAL IMPULSE CONTROL FOR IMPULSIVE SYSTEMS IN BANACH SPACES , 2011 .

[29]  R. Metzler,et al.  Relaxation in filled polymers: A fractional calculus approach , 1995 .

[30]  M. Benchohra,et al.  Impulsive differential equations and inclusions , 2006 .

[31]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[32]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[33]  Rathinasamy Sakthivel,et al.  Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays , 2009 .

[34]  Juan J. Nieto,et al.  Boundary value problems for a class of impulsive functional equations , 2008, Comput. Math. Appl..

[35]  D. O’Regan,et al.  Variational approach to impulsive differential equations , 2009 .

[36]  V. Lakshmikantham,et al.  Theory of Fractional Dynamic Systems , 2009 .

[37]  Necati Özdemir,et al.  Fractional optimal control problem of a distributed system in cylindrical coordinates , 2009 .

[38]  Wei Wei,et al.  Periodic solutions of a class of integrodifferential impulsive periodic systems with time-varying generating operators on Banach space , 2009 .

[39]  Gisèle M. Mophou,et al.  Existence and uniqueness of mild solutions to impulsive fractional differential equations , 2010 .

[40]  Jiongmin Yong,et al.  Optimal Control Theory for Infinite Dimensional Systems , 1994 .

[41]  Mouffak Benchohra,et al.  EXISTENCE AND UNIQUENESS OF SOLUTIONS TO IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS , 2009 .

[42]  Fractional nonlocal integrodifferential equations of mixed type with time-varying generating operators and optimal control , 2010 .

[43]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[44]  Mahmoud M. El-Borai,et al.  Semigroups and some nonlinear fractional differential equations , 2004, Appl. Math. Comput..

[45]  X. Xiang,et al.  Linear Impulsive Periodic System with Time-Varying Generating Operators on Banach Space , 2007 .

[46]  M. Benchohra,et al.  IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES , 2009 .

[47]  V. Lakshmikantham,et al.  Theory of Impulsive Differential Equations , 1989, Series in Modern Applied Mathematics.

[48]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[49]  James H. Liu NONLINEAR IMPULSIVE EVOLUTION EQUATIONS , 2004 .

[50]  S. Sivasundaram,et al.  Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations , 2009 .

[51]  Kok Lay Teo,et al.  Nonlinear impulsive systems on infinite dimensional spaces , 2003 .

[52]  Tao Yang,et al.  In: Impulsive control theory , 2001 .