Information theory, approximate time dependent solutions of Boltzmann's equation and Tsallis' entropy

Abstract The Jaynes information theoretic philosophy, as applied by Levine, Balian, and others, to the quantal time evolution problem, is here adopted in order to propose an approximate scheme for tackling the Vlasov equation within the framework of the generalized statistical mechanics recently advanced by Tsallis. Our approach is able to reproduce exact solutions for time dependent models in galactic dynamics.

[1]  N. Arista Z/sup 3/ corrections to the scattering of electrons and positrons in atoms and to the energy loss of fast particles in solids , 1982 .

[2]  A. Isihara,et al.  2 – Principles of Statistical Mechanics , 1971 .

[3]  Subrahmanyan Chandrasekhar,et al.  Principles of Stellar Dynamics , 1942 .

[4]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[5]  General dynamical invariants for time-dependent Hamiltonians. , 1987, Physical review. A, General physics.

[6]  H. Reinhardt On the description of dissipative collective motion , 1984 .

[7]  Joshua E. Barnes,et al.  Evolution of compact groups and the formation of elliptical galaxies , 1989, Nature.

[8]  R. Levine,et al.  Connection between the maximal entropy and the scattering theoretic analyses of collision processes , 1978 .

[9]  R. Andrade Remarks on the behavior of the Ising chain in the generalized statistics , 1994 .

[10]  Plastino,et al.  Information theory and Riemann spaces: An invariant reformulation. , 1985, Physical review. A, General physics.

[11]  A. R. Plastino,et al.  Stellar polytropes and Tsallis' entropy , 1993 .

[12]  W. Saslaw,et al.  Gravitational Physics of Stellar and Galactic Systems: Finite spherical systems – clusters of galaxies, galactic nuclei, globular clusters , 1985 .

[13]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[14]  George B. Rybicki Exact statistical mechanics of a one-dimensional self-gravitating system , 1971 .

[15]  R. Levine,et al.  Entropy and chemical change. III. The maximal entropy (subject to constraints) procedure as a dynamical theory , 1977 .

[16]  A. Mariz,et al.  On the irreversible nature of the Tsallis and Renyi entropies , 1992 .

[17]  John D. Ramshaw Irreversibility and generalized entropies , 1993 .

[18]  Zanette,et al.  Fractal random walks from a variational formalism for Tsallis entropies. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  A. R. Plastino,et al.  Tsallis' entropy, Ehrenfest theorem and information theory , 1993 .

[20]  John D. Ramshaw H-theorems for the Tsallis and Renyi Entropies , 1993 .