Non-binary low-density parity-check codes for the q-ary erasure channel

The finite-length design of non-binary low-density parity-check (LDPC) codes for the q-ary erasure channel under maximum a posteriori (MAP) decoding is addressed. A low-complexity MAP decoding algorithm is reviewed for which a code design strategy is proposed. In particular, it is illustrated how a judicious code design permits to find a trade-off between performance in terms of codeword error rate (CER) and decoding complexity. As an example, the performance curve of a short (400, 200) code on the memoryless 4-ary erasure channel tightly approaches the Singleton bound at least down to a CER of 10-8.

[1]  David Burshtein,et al.  Efficient maximum-likelihood decoding of LDPC codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[2]  Muriel Médard,et al.  On coding for reliable communication over packet networks , 2005, Phys. Commun..

[3]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[4]  D. Mackay,et al.  Low density parity check codes over GF(q) , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[5]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[6]  Milica Stojanovic,et al.  Random Linear Network Coding for Time-Division Duplexing: Field Size Considerations , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[7]  Faramarz Fekri,et al.  On decoding of low-density parity-check codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[8]  Michael Mitzenmacher,et al.  A digital fountain approach to asynchronous reliable multicast , 2002, IEEE J. Sel. Areas Commun..

[9]  Marco Chiani,et al.  Bounds on the Error Probability of Block Codes over the q-Ary Erasure Channel , 2013, IEEE Transactions on Communications.

[10]  Lara Dolecek,et al.  EXIT chart analysis and design of non-binary protograph-based LDPC codes , 2011, 2011 - MILCOM 2011 Military Communications Conference.

[11]  Wen Xu,et al.  Raptor codes for reliable download delivery in wireless broadcast systems , 2006, CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Conference, 2006..

[12]  Andrea Montanari,et al.  Maxwell Construction: The Hidden Bridge Between Iterative and Maximum a Posteriori Decoding , 2005, IEEE Transactions on Information Theory.

[13]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[14]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[15]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[16]  Marco Chiani,et al.  Performance versus overhead for fountain codes over Fq , 2010, IEEE Communications Letters.

[17]  Evangelos Eleftheriou,et al.  Progressive edge-growth Tanner graphs , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[18]  Marco Chiani,et al.  Maximum Likelihood Erasure Decoding of LDPC Codes: Pivoting Algorithms and Code Design , 2012, IEEE Transactions on Communications.

[19]  Marco Chiani,et al.  Short non-binary IRA codes on large-girth Hamiltonian graphs , 2012, 2012 IEEE International Conference on Communications (ICC).

[20]  Luigi Rizzo,et al.  Effective erasure codes for reliable computer communication protocols , 1997, CCRV.

[21]  David Declercq,et al.  Weight Distributions of Non-binary LDPC Codes , 2011, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[22]  E.R. Berlekamp,et al.  The technology of error-correcting codes , 1980, Proceedings of the IEEE.

[23]  Peter Vary,et al.  The performance of low-density random linear fountain codes over higher order galois fields under maximum likelihood decoding , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[24]  J. L. Massey,et al.  Capacity, Cutoff Rate, and Coding for a Direct-Detection Optical Channel , 1981, IEEE Trans. Commun..

[25]  Lara Dolecek,et al.  Non-binary protograph-based LDPC codes for short block-lengths , 2012, 2012 IEEE Information Theory Workshop.

[26]  Robert J. McEliece,et al.  Practical codes for photon communication , 1981, IEEE Trans. Inf. Theory.

[27]  Jörg Kliewer,et al.  On the optimal block length for joint channel and network coding , 2011, 2011 IEEE Information Theory Workshop.

[28]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.