Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning

[1]  A. R. I. Altaba Pintallavis , a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis , 1999 .

[2]  J. Slack,et al.  Analysis of the developing Xenopus tail bud reveals separate phases of gene expression during determination and outgrowth , 1998, Mechanisms of Development.

[3]  C. Wright,et al.  XBMPRII, a novel Xenopus type II receptor mediating BMP signaling in embryonic tissues. , 1998, Development.

[4]  O. Pourquié,et al.  Avian hairy Gene Expression Identifies a Molecular Clock Linked to Vertebrate Segmentation and Somitogenesis , 1997, Cell.

[5]  T. Yamaguchi New insights into segmentation and patterning during vertebrate somitogenesis. , 1997, Current opinion in genetics & development.

[6]  C. Niehrs,et al.  Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. , 1997, Development.

[7]  M. Levin Left‐right asymmetry in vertebrate embryogenesis , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[8]  T. Bouwmeester,et al.  Frzb-1 Is a Secreted Antagonist of Wnt Signaling Expressed in the Spemann Organizer , 1997, Cell.

[9]  P. Thorogood Embryos, genes and birth defects. , 1997 .

[10]  David J. Anderson,et al.  X-MyT1, a Xenopus C2HC-Type Zinc Finger Protein with a Regulatory Function in Neuronal Differentiation , 1996, Cell.

[11]  C. Nüsslein-Volhard,et al.  The zebrafish early arrest mutants. , 1996, Development.

[12]  D A Kane,et al.  The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. , 1996, Development.

[13]  A. Schier,et al.  A genetic screen for mutations affecting embryogenesis in zebrafish. , 1996, Development.

[14]  D A Kane,et al.  Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. , 1996, Development.

[15]  C. Nüsslein-Volhard,et al.  Genetic analysis of fin formation in the zebrafish, Danio rerio. , 1996, Development.

[16]  C. Niehrs,et al.  The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controling dorsoventral patterning of Xenopus mesoderm , 1996 .

[17]  G. Rubin,et al.  The Role of the Genome Project in Determining Gene Function: Insights from Model Organisms , 1996, Cell.

[18]  T. Bouwmeester,et al.  Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer , 1996, Nature.

[19]  J. Smith,et al.  Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. , 1996, Development.

[20]  B. Hogan,et al.  Bone morphogenetic proteins: multifunctional regulators of vertebrate development. , 1996, Genes & development.

[21]  G. von Dassow,et al.  Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. , 1996, Development.

[22]  N. Papalopulu,et al.  A Xenopus gene, Xbr-1, defines a novel class of homeobox genes and is expressed in the dorsal ciliary margin of the eye. , 1996, Developmental biology.

[23]  A. Joyner,et al.  An induction gene trap screen in embryonic stem cells: Identification of genes that respond to retinoic acid in vitro. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  C. Niehrs,et al.  Antagonizing the Spemann organizer: role of the homeobox gene Xvent‐1. , 1995, The EMBO journal.

[25]  B. Blumberg,et al.  Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. , 1995, Genes & development.

[26]  J. Postlethwait,et al.  A homeobox gene essential for zebrafish notochord development , 1995, Nature.

[27]  A. Gossler,et al.  Efficient isolation of novel mouse genes differentially expressed in early postimplantation embryos. , 1995, Genomics.

[28]  D. Sredni,et al.  A dominant negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm. , 1995, Biochemical and biophysical research communications.

[29]  Jonathan M.W. Slack,et al.  Tail bud determination in the vertebrate embryo , 1995, Current Biology.

[30]  David Ish-Horowicz,et al.  Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta , 1995, Nature.

[31]  I. Blitz,et al.  Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. , 1995, Development.

[32]  A. Joyner,et al.  A large-scale gene-trap screen for insertional mutations in developmentally regulated genes in mice. , 1995, Genetics.

[33]  Kenji Matsuno,et al.  Notch signaling. , 1995, Science.

[34]  Y. Sasai,et al.  Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes , 1994, Cell.

[35]  A. Fainsod,et al.  On the function of BMP‐4 in patterning the marginal zone of the Xenopus embryo. , 1994, The EMBO journal.

[36]  G. Stein,et al.  Histone gene transcription: A model for responsiveness to an integrated series of regulatory signals mediating cell cycle control and proliferation/differentiation interrelationships , 1994, Journal of cellular biochemistry.

[37]  Y. Jan,et al.  The role of gene cassettes in axis formation during Drosophila oogenesis. , 1994, Trends in genetics : TIG.

[38]  Peter Novick,et al.  Guidebook to the secretory pathway , 1994 .

[39]  B. Blumberg,et al.  Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. , 1993, Development.

[40]  K. Taniguchi,et al.  [Ontogeny of the pronephros and mesonephros in the South African clawed frog, Xenopus laevis Daudin, with special reference to the appearance and movement of the renin-immunopositive cells]. , 1993, Jikken dobutsu. Experimental animals.

[41]  Y. Jan,et al.  Functional gene cassettes in development. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Dress,et al.  Split decomposition: a new and useful approach to phylogenetic analysis of distance data. , 1992, Molecular phylogenetics and evolution.

[43]  W. Knöchel,et al.  Activin A induced expression of a fork head related gene in posterior chordamesoderm (notochord) of Xenopus laevis embryos , 1992, Mechanisms of Development.

[44]  A. Belyavsky,et al.  A novel homeobox gene expressed in the anterior neural plate of the Xenopus embryo. , 1992, Developmental biology.

[45]  J. Gerhart,et al.  Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis. , 1992, Science.

[46]  Carmen R. Domingo,et al.  Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis. , 1992 .

[47]  M. Jamrich,et al.  A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. , 1992, Genes & development.

[48]  J. Smith,et al.  Expression of a xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction , 1991, Cell.

[49]  Philippe Soriano,et al.  Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. , 1991, Genes & development.

[50]  B. Blumberg,et al.  Organizer-specific homeobox genes in Xenopus laevis embryos. , 1991, Science.

[51]  D. Melton,et al.  Pre-existent pattern in Xenopus animal pole cells revealed by induction with activin , 1991, Nature.

[52]  J. Gurdon,et al.  Xenopus Myf-5 marks early muscle cells and can activate muscle genes ectopically in early embryos. , 1991, Development.

[53]  R. Harland,et al.  In situ hybridization: an improved whole-mount method for Xenopus embryos. , 1991, Methods in cell biology.

[54]  N. Begum,et al.  Expression and synthesis of high mobility group chromosomal proteins in different rat skeletal cell lines during myogenesis. , 1990, The Journal of biological chemistry.

[55]  D. Hartley Early neurogenesis. , 1990, Seminars in cell biology.

[56]  L. Tacke,et al.  Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. , 1989, Cell differentiation and development : the official journal of the International Society of Developmental Biologists.

[57]  R. Scott,et al.  Loss of proliferative potential during terminal differentiation coincides with the decreased abundance of a subset of heterogeneous ribonuclear proteins , 1989, The Journal of cell biology.

[58]  V. Hartenstein Early neurogenesis in xenopus: The spatio-temporal pattern of proliferation and cell lineages in the embryonic spinal cord , 1989, Neuron.

[59]  T. Uemura,et al.  Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. , 1989, Genes & development.

[60]  A. Yamashita,et al.  The expression of epidermal antigens in Xenopus laevis. , 1988, Development.

[61]  M. Goebl,et al.  Most of the yeast genomic sequences are not essential for cell growth and division , 1986, Cell.

[62]  P. O’Farrell,et al.  Spatial programming of gene expression in early Drosophila embryogenesis. , 1986, Annual review of cell biology.

[63]  H. Grunz Effect of concanavalin A and vegetalizing factor on the outer and inner ectoderm layers of early gastrulae of Xenopus laevis after treatment with cytochalasin B. , 1985, Cell differentiation.

[64]  M. L. Godeau,et al.  [The skin]. , 1977, Soins; la revue de reference infirmiere.

[65]  R. Keller,et al.  Vital Dye Mapping of the Gastrula and Neurula of Xenopus Laevis , 1975 .

[66]  T. Lyerla,et al.  Histological development of the cement gland in Xenopus laevis: A light microscopic study , 1973, Journal of morphology.

[67]  W. Fitch,et al.  Construction of phylogenetic trees. , 1967, Science.

[68]  C. H. Waddington,et al.  Mechanisms of Development , 1955, Nature.