Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico

Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatán Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-copter platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5–7 cm and accuracy of the water depth measurements is estimated to be ~3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.RésuméLes observations de l’élévation de la surface de l’eau (ESE) et de la bathymétrie des lagunes et cénotes de la péninsule du Yucatán (PY) dans le Sud-Est du Mexique sont d’intérêt hydrogéologique. Les observation d’ESE (hauteur d’eau orthométrique au-dessus du niveau moyen de la mer (m)) sont nécessaires pour nourrir les modèles hydrologiques, pour estimer les gradients hydrauliques et les directions d’écoulement des eaux souterraines. Les mesures de la bathymétrie et de la profondeur de l’eau (élévation de la surface de l’eau au–dessus du lit du plan d’eau) améliorent les connaissances actuelles sur la façon dont les lagunes et les cénotes sont connectées via des systèmes complexes de cavités noyées et l’écoulement diffus dans la matrice rocheuse. Une nouvelle approche qui utilise des drones pour surveiller ESE la bathymétrie des masses d’eau intérieures sur la PY est décrite. Les observations par drone de l’ESE ont été obtenues en utilisant un radar et un système de positionnement par satellite, embarqué sur une plateforme multi-copter. La profondeur de l’eau a été mesurée à l’aide d’un sonar flottant contrôlé par le drone. Ce sonar fournit également des mesures de profondeur dans des eaux profondes et troubles. La bathymétrie (élévation en mètres de la partie mouillée) peut être calculée en soustrayant la profondeur de l’eau à partir de l’ESE. La précision des mesures d’ESE est supérieure à 5–7 cm et des mesures de la profondeur de l’eau est estimée à ~3.8% de la profondeur réelle de l’eau. La technologie a fourni des mesures précises d’ESE et de bathymétrie aussi bien pour les zones humides (lagunes) que pour les cénotes. La technologie embarquée dans le drone s’est. avérée être une alternative plus flexible et moins coûteuses que des moyens aéroportés par avion pilotés. Les drones permettent de surveiller des zones localisées dans la jungle de la PY, qui sont difficiles d’accès par des opérateurs humains.ResumenLas observaciones de la elevación del agua de superficie (WSE) y la batimetría de las lagunas y los cenotes de la Península de Yucatán (YP) en el sureste de México son de interés hidrogeológico. Se requieren observaciones de la WSE (altura ortométrica del agua por encima del nivel medio del mar (amsl)) para informar los modelos hidrológicos, estimar los gradientes hidráulicos y las direcciones del flujo del agua subterránea. Las mediciones de la batimetría y profundidad del agua (elevación del agua de superficie sobre el lecho del cuerpo de agua) mejoran el conocimiento actual sobre cómo las lagunas y los cenotes se conectan a través de los complejos sistemas de cavernas sumergidas y el flujo difuso en la matriz rocosa. Se describe un enfoque novedoso que utiliza vehículos aéreos no tripulados (UAV) para monitorear la WSE y la batimetría de las masas de agua continentales en la YP. Las observaciones de la WSE transmitidas por UAV se obtuvieron utilizando un radar y un sistema global de navegación por satélite a bordo de una plataforma de múltiples helicópteros. La profundidad del agua se midió usando un sonar flotante controlado por el UAV. Este sonar proporciona mediciones de profundidad también en aguas profundas y turbias. La batimetría (amsl de elevación del lecho) se puede calcular restando la profundidad del agua de la WSE. La precisión de las mediciones WSE es mayor a 5–7 cm y se estima que la precisión de las mediciones de la profundidad del agua es ~3.8% de la profundidad real del agua. La tecnología proporcionó mediciones precisas de la WSE y la batimetría en ambos humedales (lagunas) y cenotes. La tecnología UAV es una alternativa más flexible y de menor costo que las aeronaves tripuladas. Los UAV permiten el monitoreo de áreas remotas ubicadas en la jungla de la YP, a las cuales los operadores humanos tienen un difícil acceso.摘要墨西哥南部尤卡坦半岛泻湖和天然井的地下水文过程是水文地质学界的重要课题。通过对泻湖和天然井的水面高度和深度的测量, 输入水文模型, 可对地下水流方向和水力梯度进行估算, 进而增加对复杂水下洞穴的地质连接以及岩层基质中的水流扩散的认识。本文采用了新型的水文观测方法, 运用旋翼无人机对尤卡坦半岛内陆水体的水面高程及深度进行测量。水面高度通过无人机平台搭载的雷达和高精度差分全球卫星定位系统获取。水体深度通过无人机拖拽栓绳的漂浮声呐系统获取, 相较于传统的依靠光学水深测量方法, 该方法可用于更深和更浑浊的水体。研究结果显示, 无人机系统对水面高度的测量精度优于5–7厘米,水深的测量精度是实际水位的大约3.8%。这充分论证了无人机技术可为湿地(泻湖)和天然井的水面高度和水体深度提供精确测量。相较于载人飞行器, 无人机更加灵活、成本更低, 对于监测例如尤卡坦半岛等人类很难涉足的丛林地带偏僻地区的水文地质过程具有重大潜力。ResumoObservações da elevação da superfície da água (ESA) e a batimetria de lagoas e cenotes da Península de Yucatã (PY), no sudeste do Mexico são de interesse hidrogeológico. Observações do ESA (altura ortométrica da água acima do nível médio do mar (anmm)) são requeridas para informar modelos hidrológicos, para estimar gradientes hidráulicos e direções de fluxo da água subterrânea. Medidas de batimetria e profundidade da água (elevação da superfície da água acima do leito do corpo d’agua) aperfeiçoam os conhecimentos atuais em como lagoas e cenotes se conectam através dos complicados sistemas de cavernas submersas e do fluxo difuso na matriz da rocha. Uma nova abordagem é descrita utilizando veículos aéreos não tripulados (VANTs) para monitorar a ESA e batimetria dos corpos d’agua interiores da PY. Observações via VANT da ESA foram coletadas usando um radar e um sistema global de navegação por satélite abordo de uma plataforma multirotor. Esse sonar fornece medições de profundidade também em águas turvas e profundas. Batimetria (elevação do leito molhado anmm) pode ser computado subtraindo a profundidade da água da ESA. A acurácia das medições da ESA é melhor que 5–7 cm e acurácia da medições de profundidade da água é estimada em ~3.8% da profundidade real da água. A tecnologia forneceu medições acuradas da ESA e batimetria nas áreas úmidas (lagoas) e cenotes. Tecnologia via VANTs é uma alternativa mais flexível e de menor custo para as aeronaves tripuladas. Os VANTs permitem o monitoramento de áreas remotas localizadas na floresta da PY, que é de difícil acesso para operadores humanos.

[1]  G. Brent Dalrymple,et al.  New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary , 1992, Nature.

[2]  Guy Schumann,et al.  Exploiting the proliferation of current and future satellite observations of rivers , 2016 .

[3]  Patrice E. Carbonneau,et al.  Geosalar: Innovative Remote Sensing Methods for Spatially Continuous Mapping of Fluvial Habitat at Riverscape Scale , 2012 .

[4]  Sebastian G. Elbaum,et al.  Autonomous Aerial Water Sampling , 2015, J. Field Robotics.

[5]  F. Visser,et al.  Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry , 2015 .

[6]  Javier Marcello,et al.  High-Resolution Maps of Bathymetry and Benthic Habitats in Shallow-Water Environments Using Multispectral Remote Sensing Imagery , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[7]  W. Monroe A glossary of Karst terminology , 1970 .

[8]  D. Rundquist,et al.  Bathymetric Mapping Using IKONOS Multispectral Data , 2004 .

[9]  Paul D. Groves,et al.  Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems , 2012 .

[10]  Filippo Bandini,et al.  Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles , 2017 .

[11]  W. Andrew Marcus,et al.  Passive optical remote sensing of river channel morphology and in-stream habitat: Physical basis and feasibility , 2004 .

[12]  C. Legleiter A geostatistical framework for quantifying the reach-scale spatial structure of river morphology: 2. Application to restored and natural channels☆ , 2014 .

[13]  C. Legleiter Remote measurement of river morphology via fusion of LiDAR topography and spectrally based bathymetry , 2012 .

[14]  Thomas Heege,et al.  Benthic habitat and bathymetry mapping of shallow waters in Puerto morelos reefs using remote sensing with a physics based data processing , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[15]  D. Alsdorf,et al.  Interferometric radar measurements of water level changes on the Amazon flood plain , 2000, Nature.

[16]  Frédéric Frappart,et al.  Satellite radar altimetry water elevations performance over a 200 m wide river: Evaluation over the Garonne River , 2017 .

[17]  David Gilvear,et al.  Quantification of channel bed morphology in gravel-bed rivers using airborne multispectral imagery and aerial photography , 1997 .

[18]  M. Pilkington,et al.  Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico , 1991 .

[19]  F. Brotzen,et al.  The cretaceous-tertiary boundary , 1960 .

[20]  Frédérique Seyler,et al.  Monitoring Continental Surface Waters by Satellite Altimetry , 2008 .

[21]  Carl J. Legleiter,et al.  A geostatistical framework for quantifying the reach-scale spatial structure of river morphology: 1. Variogram models, related metrics, and relation to channel form , 2014 .

[22]  Sebastian Elbaum,et al.  Autonomous Aerial Water Sampling , 2015, J. Field Robotics.

[23]  Zhong Lu,et al.  C‐band radar observes water level change in swamp forests , 2005 .

[24]  D. Lyzenga Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data , 1981 .

[25]  Norbert Pfeifer,et al.  Evaluation of a Novel Uav-Borne Topo-Bathymetric Laser Profiler , 2016 .

[26]  Sara Maria Lerer,et al.  Hydrogeology of the south-eastern Yucatan Peninsula: New insights from water level measurements, geochemistry, geophysics and remote sensing , 2010 .

[27]  Stuart N. Lane,et al.  REMOTE SENSING OF CLEAR-WATER, SHALLOW, GRAVEL-BED RIVERS USING DIGITAL PHOTOGRAMMETRY , 2001 .

[28]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[29]  M. Pilkington,et al.  Size and structure of the Chicxulub crater revealed by horizontal gravity gradients and cenotes , 1995, Nature.

[30]  Paul D. Bates,et al.  ICESat‐derived inland water surface spot heights , 2016 .

[31]  Thomas Heege,et al.  Bathymetry mapping and sea floor classification using multispectral satellite data and standardized physics-based data processing , 2011, Remote Sensing.

[32]  R. E. Thomas,et al.  Quantification of braided river channel change using archival digital image analysis , 2010 .

[33]  W. Andrew Marcus,et al.  Management Applications of Optical Remote Sensing in the Active River Channel , 2012 .

[34]  C. Delacourt,et al.  Very high spatial resolution imagery for channel bathymetry and topography from an unmanned mapping controlled platform , 2007 .

[35]  Abdollah A. Jarihani,et al.  Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods , 2013 .

[36]  Laurence C. Smith,et al.  Amazon floodplain water level changes measured with interferometric SIR-C radar , 2001, IEEE Trans. Geosci. Remote. Sens..

[37]  Maurizio Porfiri,et al.  Surface flow measurements from drones , 2016 .

[38]  P. Bauer‐Gottwein,et al.  Review: The Yucatán Peninsula karst aquifer, Mexico , 2011 .

[39]  E. Escobar,et al.  Los cenotes de la península de Yucatán , 2007 .

[40]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[41]  Juha Hyyppä,et al.  Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography , 2013, Remote. Sens..

[42]  Stuart N. Lane,et al.  Feature based image processing methods applied to bathymetric measurements from airborne remote sensing in fluvial environments , 2006 .

[43]  B. Kløve,et al.  Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification , 2011 .

[44]  Carlos Loureiro,et al.  Retrieval of nearshore bathymetry from Landsat 8 images: A tool for coastal monitoring in shallow waters , 2015 .

[45]  P. Groves Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems , 2007 .

[46]  F. Comín,et al.  Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico) , 2004, Hydrobiologia.

[47]  R. Stumpf,et al.  Determination of water depth with high‐resolution satellite imagery over variable bottom types , 2003 .

[48]  A. Hegde,et al.  Bathymetry Mapping Using Landsat 8 Satellite Imagery , 2015 .

[49]  Jean-Stéphane Bailly,et al.  Very-high-resolution mapping of river-immersed topography by remote sensing , 2008 .

[50]  P. Spudis,et al.  Chicxulub Multiring Impact Basin: Size and Other Characteristics Derived from Gravity Analysis , 1993, Science.

[51]  Tommaso Moramarco,et al.  Investigating the uncertainty of satellite altimetry products for hydrodynamic modelling , 2015 .

[52]  P. Knudsen,et al.  Ultra-Tightly Coupled GNSS/INS for small UAVs , 2017 .

[53]  R. Cheloha,et al.  The of a Development , 2004 .

[54]  Ole Baltazar Andersen,et al.  CryoSat-2 altimetry for river level monitoring - Evaluation in the Ganges-Brahmaputra River basin , 2015 .

[55]  M. Pilkington,et al.  Yucatán karst features and the size of Chicxulub crater , 1996 .

[56]  Peter Bauer-Gottwein,et al.  Hydrologic Dynamics of the Ground-Water-Dependent Sian Ka’an Wetlands, Mexico, Derived from InSAR and SAR Data , 2010, Wetlands.

[57]  Mónica García,et al.  Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an Unmanned Aerial Vehicle , 2017 .

[58]  Aboelmagd Noureldin,et al.  Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration , 2012 .

[59]  G. Velazquez,et al.  Ring of Cenotes (sinkholes), northwest Yucatan, Mexico: Its hydrogeologic characteristics and possible association with the Chicxulub impact crater , 1995 .

[60]  V. Klemas,et al.  Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview , 2015 .

[61]  Zhong Lu,et al.  Radarsat-1 and ERS InSAR Analysis Over Southeastern Coastal Louisiana: Implications for Mapping Water-Level Changes Beneath Swamp Forests , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Stuart N. Lane,et al.  The development of an automated correction ­procedure for digital photogrammetry for the study of wide, shallow, gravel‐bed rivers , 2000 .

[63]  D. Roberts,et al.  Effects of channel morphology and sensor spatial resolution on image-derived depth estimates , 2005 .

[64]  Hassan Mohamed,et al.  Bathymetry Determination from High Resolution Satellite Imagery Using Ensemble Learning Algorithms in Shallow Lakes : Case Study , 2022 .

[65]  R. Lawrence,et al.  Spectrally based remote sensing of river bathymetry , 2009 .