Infinitely many positive solutions for a Schrödinger-Poisson system

Abstract We are interested in the existence of infinitely many positive non-radial solutions of a Schrodinger–Poisson system with a positive radial bounded external potential decaying at infinity.

[1]  Juncheng Wei,et al.  Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem , 2005 .

[2]  Giusi Vaira,et al.  Positive solutions for some non-autonomous Schrödinger–Poisson systems , 2010 .

[3]  Juncheng Wei,et al.  INFINITELY MANY SOLUTIONS FOR THE PRESCRIBED SCALAR CURVATURE PROBLEM ON , 2008 .

[4]  Dimitri Mugnai,et al.  Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  Juncheng Wei,et al.  Infinitely many positive solutions for the nonlinear Shcrodinger equations in $R^N$ , 2008, 0804.4031.

[6]  Fukun Zhao,et al.  On the existence of solutions for the Schrödinger-Poisson equations , 2008 .

[7]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[8]  M. Kwong Uniqueness of positive solutions of Δu−u+up=0 in Rn , 1989 .

[9]  David Ruiz,et al.  The Schrödinger–Poisson equation under the effect of a nonlinear local term , 2006 .

[10]  Juncheng Wei,et al.  Infinitely many solutions for the prescribed scalar curvature problem on SN , 2010 .

[11]  Juncheng Wei,et al.  On interacting bumps of semi-classical states of nonlinear Schrödinger equations , 2000, Advances in Differential Equations.

[12]  Antonio Azzollini,et al.  On the Schrödinger-Maxwell equations under the effect of a general nonlinear term , 2009, 0904.1557.

[13]  Pietro d’Avenia,et al.  Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations , 2002 .

[14]  Giusi Vaira,et al.  On Concentration of Positive Bound States for the Schrödinger-Poisson Problem with Potentials , 2008 .

[15]  Antonio Ambrosetti,et al.  Perturbation Methods and Semilinear Elliptic Problems on R^n , 2005 .

[16]  Giusi Vaira,et al.  Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential , 2009, 0904.4105.

[17]  Antonio Azzollini,et al.  A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations , 2007, math/0703677.

[18]  Hiroaki Kikuchi,et al.  Existence and Stability of Standing Waves For Schrödinger-Poisson-Slater Equation , 2007 .

[19]  Huan-Song Zhou,et al.  Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$ , 2007 .

[20]  Hiroaki Kikuchi On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations , 2007 .

[21]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  David Ruiz,et al.  Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations , 2007 .

[23]  Juncheng Wei,et al.  Infinitely many positive solutions for the nonlinear Schrödinger equations in $${\mathbb{R}^N}$$ , 2010 .