Geometric Fourier Analysis of the Conformal Camera for Active Vision

Suppose one intends to design an active vision system that should perform some artificial intelligence functions. For instance, it should recognize a planar object (or a three-dimensional object containing a piece of a planar surface) in a dynamic scene. Ideally, such a system should be built upon some data model representing visual inputs and algorithms storing, processing, and analyzing visual information that are well adapted to image transformations produced by different perspectives between planar objects and the imaging system. In spite of its importance, this problem remained unsolved until recently. In this article, building on the author's work, projective Fourier analysis for patterns is constructed in the framework of geometric Fourier analysis on groups and homogeneous spaces. It is done by identifying in the conformal camera the group $\mathbf{SL(}2,\mathbb{C)}$, which gives image projective transformations by acting through linear-fractional mappings on the image plane---homogeneous under th...

[1]  Yehoshua Y. Zeevi,et al.  The Canonical Coordinates Method for Pattern Deformation: Theoretical and Computational Considerations , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Y. Mohammed Optical flow in log-mapped image plane - a new approach , 2002 .

[3]  J. Turski Harmonic analysis on SL(2, C ) and proje , 1998 .

[4]  Benjamin B. Bederson,et al.  A miniaturized space-variant active vision system: Cortex-I , 1995, Machine Vision and Applications.

[5]  F. Pardo,et al.  A new foveated space-variant camera for robotic applications , 1996, Proceedings of Third International Conference on Electronics, Circuits, and Systems.

[6]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  Jacek Turski Projective Fourier analysis in computer vision: theory and computer simulations , 1997, Optics & Photonics.

[8]  Mohammed Yeasin,et al.  Optical Flow in Log-Mapped Image Plane-A New Approach , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  A. Terras Harmonic Analysis on Symmetric Spaces and Applications I , 1985 .

[10]  K. W. Cattermole The Fourier Transform and its Applications , 1965 .

[11]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[12]  D. Wolpert,et al.  Evidence for an eye-centered spherical representation of the visuomotor map. , 1999, Journal of neurophysiology.

[13]  Larry S. Shapiro,et al.  Affine Analysis of Image Sequences: Contents , 1995 .

[14]  Faouzi Ghorbel,et al.  A complete invariant description for gray-level images by the harmonic analysis approach , 1994, Pattern Recognit. Lett..

[15]  J. Turski Geometric Fourier Analysis for Computational Vision , 2005 .

[16]  Ta-Hsin Li,et al.  Multiscale Representation and Analysis of Spherical Data by Spherical Wavelets , 1999, SIAM J. Sci. Comput..

[17]  A. Duijndam,et al.  Nonuniform Fast Fourier Transform , 1997 .

[18]  R. J. Plymen,et al.  REPRESENTATION THEORY OF SEMISIMPLE GROUPS: An Overview Based on Examples , 1989 .

[19]  Jacob Rubinstein,et al.  The canonical coordinates method for pattern recognition--II. Isomorphisms with affine transformations , 1994, Pattern Recognit..

[20]  David Mumford,et al.  Mathematical theories of shape: do they model perception? , 1991, Optics & Photonics.

[21]  David L. Donoho,et al.  Digital curvelet transform: strategy, implementation, and experiments , 2000, SPIE Defense + Commercial Sensing.

[22]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[23]  K. I. Gross On the Evolution of Noncommutative Harmonic Analysis , 1978 .

[24]  R. Bracewell The Fourier transform. , 1989, Scientific American.

[25]  Jean-Paul Gauthier,et al.  Harmonic Analysis : Motions and Pattern Analysis on Motion Groups and Their Homogeneous Spaces , 2004 .

[26]  Tristan Needham,et al.  Visual Complex Analysis , 1997 .

[27]  Mario Ferraro,et al.  Transformational properties of integral transforms of images , 1992 .

[28]  Jacek Turski,et al.  Computational harmonic analysis for human and robotic vision systems , 2006, Neurocomputing.

[29]  K. Gröchenig,et al.  Numerical and Theoretical Aspects of Nonuniform Sampling of Band-Limited Images , 2001 .

[30]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[31]  E. L. Schwartz,et al.  Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception , 1977, Biological Cybernetics.

[32]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[33]  Eamon B. Barrett,et al.  Invariants under image perspective transformations: Theory and examples , 1990, Int. J. Imaging Syst. Technol..

[34]  Sigurdur Helgason,et al.  Topics in Harmonic Analysis on Homogeneous Spaces , 1981 .

[35]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[36]  Jacek Turski Projective Fourier analysis for patterns , 2000, Pattern Recognit..

[37]  Jean-Pierre Antoine,et al.  Two-dimensional directional wavelets in image processing , 1996, Int. J. Imaging Syst. Technol..

[39]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[40]  Giulio Sandini,et al.  A retina-like CMOS sensor and its applications , 2000, Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No.00EX410).