A Calabi theorem for solutions to the parabolic Monge–Ampère equation with periodic data

Abstract We classify all solutions to − u t det ⁡ D 2 u = f ( x )  in  R − n + 1 , where f ∈ C α ( R n ) is a positive periodic function in x . More precisely, if u is a parabolically convex solution to above equation, then u is the sum of a convex quadratic polynomial in x , a periodic function in x and a linear function of t . It can be viewed as a generalization of the work of Gutierrez and Huang in 1998. And along the line of approach in this paper, we can treat other parabolic Monge-Ampere equations.

[1]  Eugenio Calabi,et al.  Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. , 1958 .

[2]  Luis A. Caffarelli,et al.  A localization property of viscosity solutions to the Monge-Ampere equation and their strict convexity , 1990 .

[3]  Jingang Xiong,et al.  On Jörgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge–Ampère equations , 2011 .

[4]  Wei Zhang,et al.  An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation , 2018 .

[5]  Li Yanyan,et al.  An Extension to a Theorem of Jörgens , 2003 .

[6]  William J. Firey,et al.  Shapes of worn stones , 1974 .

[7]  Geometric properties of the sections of solutions to the Monge-Ampère equation , 2000 .

[8]  Savior F. Eason,et al.  ON EXISTENCE , 2019 .

[9]  L. Tang Regularity results on the parabolic Monge–Ampère equation with VMO type data , 2013 .

[10]  Harnack inequality for the linearized parabolic Monge-Ampère equation , 1999 .

[11]  Qingbo Huang,et al.  W2,p Estimates for the Parabolic¶Monge-Ampère Equation , 2001 .

[12]  A. V. Pogorelov On the improper convex affine hyperspheres , 1972 .

[13]  Kaising Tso,et al.  On an Aleksandrov-Bakel'Man Type Maximum Principle for Second-Order Parabolic Equations , 1985 .

[14]  이현주 Q. , 2005 .

[15]  Yanyan Li,et al.  An extension to a theorem of Jörgens, Calabi, and Pogorelov , 2003 .

[16]  C. E. Gutiérrez,et al.  A GENERALIZATION OF A THEOREM BY CALABI TO THE PARABOLIC MONGE-AMPERE EQUATION , 1998 .

[17]  E. Teixeira,et al.  Global Monge-Ampere equation with asymptotically periodic data , 2014, 1406.1386.

[18]  Cristian E. Gutiérrez,et al.  The Monge―Ampère Equation , 2001 .

[19]  Lihe Wang On the regularity theory of fully nonlinear parabolic equations , 1990 .

[20]  S. Yau,et al.  Complete affine hypersurfaces. Part I. The completeness of affine metrics , 1986 .

[21]  N. Krylov,et al.  A CERTAIN PROPERTY OF SOLUTIONS OF PARABOLIC EQUATIONS WITH MEASURABLE COEFFICIENTS , 1981 .

[22]  Lihe Wang On the regularity theory of fully nonlinear parabolic equations: II , 1992 .

[23]  Yanyan Li Some existence results for fully nonlinear elliptic equations of monge‐ampère type , 1990 .

[24]  Kaising Tso,et al.  Deforming a hypersurface by its Gauss-Kronecker curvature , 1985 .

[25]  C. E. Gutiérrez,et al.  Properties of the solutions of the linearized Monge-Ampère equation , 1997 .

[26]  Luis A. Caffarelli,et al.  A Liouville theorem for solutions of the Monge–Ampère equation with periodic data , 2004 .

[27]  K. Jörgens Über die Lösungen der Differentialgleichungrt−s2=1 , 1954 .

[28]  N. Krylov Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation , 1976 .