Rectangular W-algebras of types so(M) and sp(2M) and dual coset CFTs

[1]  T. Creutzig,et al.  Rectangular W algebras and superalgebras and their representations , 2019, Physical Review D.

[2]  Dushyant Kumar,et al.  Symmetry algebras of stringy cosets , 2018, Journal of High Energy Physics.

[3]  T. Creutzig,et al.  Rectangular W-algebras, extended higher spin gravity and dual coset CFTs , 2018, Journal of High Energy Physics.

[4]  T. Creutzig,et al.  Cosets of affine vertex algebras inside larger structures , 2014, Journal of Algebra.

[5]  M. Vasiliev,et al.  From Coxeter higher-spin theories to strings and tensor models , 2018, Journal of High Energy Physics.

[6]  M. Gaberdiel,et al.  Higher spin algebras and large N = 4 holography , 2018 .

[7]  S. Rey,et al.  Asymptotic symmetries of colored gravity in three dimensions , 2017, 1712.07744.

[8]  T. Creutzig,et al.  Orbifolds of symplectic fermion algebras , 2014, 1404.2686.

[9]  M. Hazewinkel,et al.  The Lie algebras and cohomologies of Lie algebras of differential operators , 2016 .

[10]  Yasuaki Hikida,et al.  Marginal deformations and the Higgs phenomenon in higher spin AdS3 holography , 2015, 1503.03870.

[11]  T. Creutzig,et al.  The super _{1+∞} algebra with integral central charge , 2012, 1209.6032.

[12]  C. Peng,et al.  Extended supersymmetry in AdS3 higher spin theories , 2014, 1408.5144.

[13]  R. Gopakumar,et al.  Higher spins & strings , 2014, 1406.6103.

[14]  T. Creutzig,et al.  Higher spin AdS3 holography with extended supersymmetry , 2014, 1406.1521.

[15]  C. Peng,et al.  The symmetry of large $ \mathcal{N} $ = 4 holography , 2014, 1403.2396.

[16]  C. Candu,et al.  The N = 1 algebra W ∞ (µ) and its truncations , 2014 .

[17]  C. Peng,et al.  The symmetry of large N = 4 holography , 2014 .

[18]  M. Beccaria,et al.  The large N = 4 superconformal W ∞ algebra , 2014 .

[19]  C. Candu,et al.  On the coset duals of extended higher spin theories , 2013, 1312.5240.

[20]  T. Creutzig,et al.  Extended higher spin holography and Grassmannian models , 2013, 1306.0466.

[21]  R. Gopakumar,et al.  Large $ \mathcal{N} $ = 4 holography , 2013, 1305.4181.

[22]  M. Gaberdiel,et al.  Even spin minimal model holography , 2012, 1211.3113.

[23]  C. Peng,et al.  Symmetries of holographic super-minimal models , 2012, 1203.5768.

[24]  R. Gopakumar,et al.  Large N = 4 holography , 2013 .

[25]  T. Creutzig,et al.  N = 1 supersymmetric higher spin holography on AdS 3 , 2013 .

[26]  Yasuaki Hikida Conical defects and N = 2 higher spin holography , 2013 .

[27]  Yasuaki Hikida Conical defects and $ \mathcal{N}=2 $ higher spin holography , 2012, 1212.4124.

[28]  Eric Perlmutter,et al.  The semiclassical limit of WN CFTs and Vasiliev theory , 2012, 1210.8452.

[29]  T. Creutzig,et al.  $ \mathcal{N}=1 $ supersymmetric higher spin holography on AdS3 , 2012, 1209.5404.

[30]  M. Gaberdiel,et al.  Duality in $ \mathcal{N}=2 $ minimal model holography , 2012, 1207.6646.

[31]  R. Gopakumar,et al.  Triality in minimal model holography , 2012, 1205.2472.

[32]  Gustavo Lucena Gómez,et al.  Super-W∞ asymptotic symmetry of higher-spin AdS3 supergravity , 2012, 1203.5152.

[33]  R. Gopakumar,et al.  Conical defects in higher spin theories , 2011, 1111.3381.

[34]  T. Creutzig,et al.  Higher spin AdS3 supergravity and its dual CFT , 2011, 1111.2139.

[35]  M. Gaberdiel,et al.  Minimal model holography for SO(2N) , 2011, 1106.2634.

[36]  C. Ahn The large N ’t Hooft limit of coset minimal models , 2011, 1106.0351.

[37]  R. Gopakumar,et al.  An AdS_3 Dual for Minimal Model CFTs , 2010, 1011.2986.

[38]  S. Pfenninger,et al.  Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields , 2010, 1008.4744.

[39]  V. Kac,et al.  Quantum reduction and representation theory of superconformal algebras , 2003, math-ph/0304011.

[40]  V. Kac,et al.  Integrable Highest Weight Modules over Affine Superalgebras and Appell's Function , 2000, math-ph/0006007.

[41]  M. Vasiliev,et al.  Higher-spin gauge interactions for massive matter fields in 3D AdS space-time , 1998, hep-th/9806236.

[42]  M. Vasiliev,et al.  The structure of the super-W∞(λ) algebra , 1991 .

[43]  Kris Thielemans,et al.  A Mathematica package for computing operator product expansions , 1991 .

[44]  S. Odake,et al.  W1+∞ and super-W∞ algebras with SU(N) symmetry , 1991 .

[45]  E. Kiritsis,et al.  GRASSMANNIAN COSET MODELS AND UNITARY REPRESENTATIONS OF W , 1990 .

[46]  Edward Witten,et al.  (2+1)-Dimensional Gravity as an Exactly Soluble System , 1988 .

[47]  B. Feigin The Lie algebras $ \mathfrak{gl}(\lambda)$ and cohomologies of Lie algebras of differential operators , 1988 .

[48]  D. Gross,et al.  High-energy symmetries of string theory. , 1988, Physical review letters.

[49]  A. Achúcarro,et al.  A Chern-Simons Action for Three-Dimensional anti-De Sitter Supergravity Theories , 1986 .

[50]  A. Kent,et al.  Virasoro algebras and coset space models , 1985 .