New prospects in flame retardant polymer materials: From fundamentals to nanocomposites

Abstract The objective of this review is to make the field of “flame retardants for polymer materials” more accessible to the materials science community, i.e. chemists, physicists and engineers. We present the fundamentals of polymer combustion theory, the main flame retardant properties and tests used to describe fire behavior, together with the nature and modes of action of the most representative flame retardants and the synergistic effects that can be achieved by combining them. We particularly focus on polymer nanocomposites, i.e. polymer matrices filled with specific, finely dispersed nanofillers, which will undoubtedly pave the way for future materials combining physicochemical and thermo-mechanical performances with enhanced flame retardant behavior.

[1]  S. Levchik,et al.  Fire‐retardant action of resorcinol bis(diphenyl phosphate) in PC–ABS blend. II. Reactions in the condensed phase , 1999 .

[2]  R. Jeng,et al.  Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy , 2004 .

[3]  Cheng‐Chien Wang,et al.  The flame-retardant material – 1. Studies on thermal characteristics and flame retardance behavior of phosphorus-containing copolymer of methyl methacrylate with 2-methacryloxyethyl phenyl phosphate , 2006 .

[4]  Joerg Mayer,et al.  Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix , 2002 .

[5]  P. Joseph,et al.  Flame retardance in some polystyrenes and poly(methyl methacrylate)s with covalently bound phosphorus-containing groups: initial screening experiments and some laser pyrolysis mechanistic studies , 2000 .

[6]  Yi Ding,et al.  Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis , 2001 .

[7]  Sophie Duquesne,et al.  Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate , 2001 .

[8]  G. Camino,et al.  Metal functionalized POSS as fire retardants in polypropylene , 2006 .

[9]  M. Abdel-Goad,et al.  Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites , 2005 .

[10]  L. Ferry,et al.  Magnesium hydroxide/zinc borate/talc compositions as flame-retardants in EVA copolymer , 2000 .

[11]  S. Bourbigot,et al.  Fire retardant polymers : recent developments and opportunities , 2007 .

[12]  G. Camino,et al.  Polypropylene metal functionalised POSS nanocomposites: A study by thermogravimetric analysis , 2006 .

[13]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[14]  T. R. Hull,et al.  Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems , 2007 .

[15]  A. Granzow,et al.  Flame retardation by phosphorus compounds , 1978 .

[16]  Kathryn M. Butler,et al.  Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites , 2004 .

[17]  C. A. Wilkie,et al.  The Relationship Between Thermal Degradation Behavior of Polymer and the Fire Retardancy of Polymer/Clay Nanocomposites , 2005 .

[18]  J. M. Chimenos,et al.  Synthetic hydromagnesite as flame retardant. Evaluation of the flame behaviour in a polyethylene matrix , 2006 .

[19]  Rudi Cloots,et al.  MORPHOLOGICAL STUDY OF MAGNESIUM HYDROXIDE NANOPARTICLES PRECIPITATED IN DILUTE AQUEOUS SOLUTION , 2003 .

[20]  M. Rigolo,et al.  Basic magnesium carbonate flame retardants for polypropylene , 2004 .

[21]  John Davis,et al.  The technology of halogen-free flame retardant phosphorus additives for polymeric systems , 1996 .

[22]  Charles A. Wilkie,et al.  Thermal degradation of ethylene–vinyl acetate coplymer nanocomposites , 2005 .

[23]  Masanori Kato,et al.  Thermogravimetric study on the decomposition of hydromagnesite 4 MgCO3 · Mg(OH)2 · 4 H2O , 1979 .

[24]  G. Camino,et al.  Heat Induced Structure Modifications in Polymer-Layered Silicate Nanocomposites , 2004 .

[25]  Jürgen Troitzsch,et al.  International Plastics Flammability Handbook , 1983 .

[26]  E. Wiberg,et al.  Über die Einwirkung von Phosphorwasserstoff auf Borfluorid. (2. Mitteilung zur Frage der Existenz von Borhalogenid-Additionsverbindungen anomaler Zusammensetzung) , 1935 .

[27]  S. Bourbigot,et al.  Polymer Nanocomposites: How to Reach Low Flammability? , 2006 .

[28]  Clayton Huggett,et al.  Estimation of rate of heat release by means of oxygen consumption measurements , 1980 .

[29]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[30]  G. Bertelli,et al.  The oxygen index method in fire retardance studies of polymeric materials , 1988 .

[31]  T. Kashiwagi,et al.  Cone Calorimeter Combustion and Gasification Studies of Polymer Layered Silicate Nanocomposites. , 2002 .

[32]  J. Nagy,et al.  How Carbon Nanotube Crushing can Improve Flame Retardant Behaviour in Polymer Nanocomposites , 2007 .

[33]  P. Dubois,et al.  Supported coordination polymerization: a unique way to potent polyolefin carbon nanotube nanocomposites. , 2005, Chemical communications.

[34]  G. Camino,et al.  Polypropylene–polyhedral oligomeric silsesquioxanes (POSS) nanocomposites , 2005 .

[35]  S. Serizawa,et al.  Silicone derivatives as new flame retardants for aromatic thermoplastics used in electronic devices , 1998 .

[36]  Z. Janović Brominated copolymers of reduced flammability , 1999 .

[37]  E. Peters Flame-retardant thermoplastics. I. Polyethylene–red phosphorus† , 1979 .

[38]  P. Ding,et al.  Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA , 2003 .

[39]  L. Costa,et al.  The Effect of Nanometals on the Flammability and Thermooxidative Degradation of Polymer Materials , 2000 .

[40]  N. Martín Encyclopedia of Polymer Science and Technology , 2007 .

[41]  S. Bourbigot,et al.  Rheological investigations in fire retardancy: application to ethylene–vinyl‐acetate copolymer–magnesium hydroxide/zinc borate formulations , 2000 .

[42]  T. Kanai,et al.  Flame retardancy of a polycarbonate–polydimethylsiloxane block copolymer: The effect of the dimethylsiloxane block size , 2006 .

[43]  Hui Yang,et al.  Flame retarding mechanism of polycarbonate containing methylphenyl-silicone , 2007 .

[44]  Charles A. Wilkie,et al.  Fire retardancy of polymeric materials , 2000 .

[45]  Giovanni Camino,et al.  Study of the mechanism of intumescence in fire retardant polymers: Part VI—Mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures , 1984 .

[46]  Günter Beyer,et al.  Short communication: Carbon nanotubes as flame retardants for polymers , 2002 .

[47]  A. Granzow,et al.  The effect of red phosphorus on the flammability of poly(ethylene terephthalate) , 1976 .

[48]  M. Lewin Reflections on migration of clay and structural changes in nanocomposites , 2006 .

[49]  S. Duquesne,et al.  X-ray photoelectron spectroscopy investigation of fire retarded polymeric materials: application to the study of an intumescent system , 2002 .

[50]  T. Kashiwagi,et al.  Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites , 2007 .

[51]  W. C. Kuryla,et al.  Flame retardancy of polymeric materials , 1973 .

[52]  G. Zaikov,et al.  Recent Advances in Flame Retardancy of Polymeric Materials (Materials, Applications, Industry Developments, Markets) , 1994, Engineering Plastics.

[53]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[54]  P. Cusack,et al.  Effects of tin additives on the flammability and smoke emission characteristics of halogen-free ethylene-vinyl acetate copolymer , 2003 .

[55]  K. Pál,et al.  Plastics : their behaviour in fires , 1991 .

[56]  L. Ferry,et al.  Influence of talc physical properties on the fire retarding behaviour of (ethylene–vinyl acetate copolymer/magnesium hydroxide/talc) composites , 2005 .

[57]  L. Delfosse,et al.  Combustion of ethylene-vinyl acetate copolymer filled with aluminium and magnesium hydroxides , 1989 .

[58]  T. Tang,et al.  Influences of catalysis and dispersion of organically modified montmorillonite on flame retardancy of polypropylene nanocomposites , 2007 .

[59]  G. Xu,et al.  Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites , 2001 .

[60]  Charles A. Wilkie,et al.  Fire Retardancy of Polymeric Materials, Second Edition , 2009 .

[61]  Edward D. Weil,et al.  Flame retardancy of thermoplastic polyesters—a review of the recent literature , 2005 .

[62]  P. Bajaj,et al.  Fire-retardant materials , 1992 .

[63]  Kathryn M. Butler,et al.  Flame retardant mechanism of silica gel/silica , 2000 .

[64]  Sergei V. Levchik,et al.  New developments in fire retardant non‐halogen aromatic phosphates , 2000 .

[65]  V. Babushok,et al.  Inhibitor rankings for alkane combustion , 2000 .

[66]  B. Schartel,et al.  Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) in polycarbonate/acrylonitrile–butadiene–styrene blends , 2007 .

[67]  Michele Angelo Petrone,et al.  Fire , 1997, The Lancet.

[68]  C. A. Wilkie,et al.  Flame retardant polymer nanocomposites , 2007 .

[69]  A. Ballistreri,et al.  Mechanism of flame retardant action of red phosphorus in polyacrylonitrile , 1983 .

[70]  T. S. P. S.,et al.  GROWTH , 1924, Nature.

[71]  John R. Schlup,et al.  Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide , 1991 .

[72]  G. Nelson FIRE AND POLYMERS , 2000 .

[73]  S. Levchik,et al.  A Review of Recent Progress in Phosphorus-based Flame Retardants , 2006 .

[74]  T. Kashiwagi,et al.  Flame‐retardant mechanism of silica: Effects of resin molecular weight , 2003 .

[75]  Qiang Wu,et al.  Preparation and characterization of microcapsulated red phosphorus and its flame‐retardant mechanism in halogen‐free flame retardant polyolefins , 2003 .

[76]  S. Bourbigot,et al.  Combustion behaviour of ethylene vinyl acetate copolymer‐based intumescent formulations using oxygen consumption calorimetry , 1998 .

[77]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[78]  T. Kashiwagi,et al.  Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration * , 2005 .

[79]  G. Camino,et al.  Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites , 2007 .

[80]  李幼升,et al.  Ph , 1989 .

[81]  E. Leroy,et al.  Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly(methyl methacrylate) (PMMA) , 2005 .

[82]  G. Camino,et al.  Influence of the fire retardant ammonium polyphosphate on the thermal degradation of poly(methyl methacrylate) , 1978 .

[83]  S. Hoa,et al.  Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites , 2005 .

[84]  F. Laoutid,et al.  Mechanical Properties and Flame‐Retardant Behavior of Ethylene Vinyl Acetate/High‐Density Polyethylene Coated Carbon Nanotube Nanocomposites , 2007 .

[85]  G. Camino,et al.  10 – Intumescent materials , 2001 .

[86]  John W. Lyons,et al.  The chemistry and uses of fire retardants , 1970 .

[87]  H. Horacek,et al.  Advantages of flame retardants based on nitrogen compounds , 1996 .

[88]  J. M. Chimenos,et al.  Synthetic Hydromagnesite as Flame Retardant. A Study of the Stearic Coating Process , 2005 .

[89]  S. Levchik,et al.  New halogen‐free fire retardant for engineering plastic applications , 2001 .

[90]  Takashi Kashiwagi,et al.  PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations , 2000 .

[91]  S. Bourbigot,et al.  Recent Advances for Intumescent Polymers , 2004 .