Combination of CEM & RXD for target detection in hyperspectral images

There are two target detection algorithms which are commonly used in various applications. Both of them work on a related linear process, which makes them intensely related. This paper suggests a hyperspectral target detection algorithm which is a combination of CEM (Constrained Energy Minimization) and RXD (Reed-Xiaoli detector) algorithms to employ the advantages of both approaches to improve detection performance. The comparison of different target detection algorithms are performed by Receiver Operating Characteristic (ROC) Curves. The experimental result shows that this combination can efficiently improves the detection performance.

[1]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[2]  Stefania Matteoli,et al.  An Automatic Approach to Adaptive Local Background Estimation and Suppression in Hyperspectral Target Detection , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Saeid Homayouni,et al.  An Approach for Subpixel Anomaly Detection in Hyperspectral Images , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  Chein-I Chang,et al.  Real-time processing algorithms for target detection and classification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[5]  Chein-I Chang,et al.  Anomaly detection and classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[6]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[7]  Heesung Kwon,et al.  Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[8]  L.L. Scharf,et al.  Adaptive matched subspace detectors and adaptive coherence estimators , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.