Electrical Remodeling in Atrial Fibrillation

Electrical remodeling refers to any change in electrical function that promotes atrial fibrillation (AF). A key advance in understanding the mechanisms of AF has been the identification of ion channels, gap junctions and regulators of intracellular Ca2+ homeostasis as the molecular determinants of abnormal atrial electrical activity, and how these are modified in AF. This review focuses on the cellular and molecular basis of altered electrical properties of the atria in AF, with the goal of providing new insights into the potential molecular mechanisms and the identification of putative targets for antiarrhythmic therapy.ZusammenfassungElektrisches Remodeling fasst alle Änderungen der elektrischen Eigenschaften des Vorhofs, die das Auftreten von Vorhofflimmern erleichtern, zusammen. Durch Fortschritte bei der Aufklärung der zugrundeliegenden Mechanismen von Vorhofflimmern konnten die veränderte Funktion von Ionenkanälen und die gestörte Regulation der Ca2+-Homöostase als molekulare Grundlagen des Vorhofflimmerns nachgewiesen werden. Diese Übersicht fasst die zelluläre und molekulare Basis der veränderten elektrischen Eigenschaften des Vorhofs zusammen, mit dem Ziel, neue Angriffspunkte für eine optimierte Behandlung von Vorhofflimmern aufzuzeigen.

[1]  Stanley Nattel,et al.  Atrial Ionic Remodeling Induced by Atrial Tachycardia in the Presence of Congestive Heart Failure , 2004, Circulation.

[2]  R. Henning,et al.  Calpain inhibition prevents pacing-induced cellular remodeling in a HL-1 myocyte model for atrial fibrillation. , 2004, Cardiovascular research.

[3]  Michael R. Rosen,et al.  The 'Sicilian Gambit' - A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms , 1991 .

[4]  Y. Kurachi,et al.  G protein regulation of potassium ion channels. , 1998, Pharmacological reviews.

[5]  S. Nattel,et al.  Effects of Angiotensin-Converting Enzyme Inhibition on the Development of the Atrial Fibrillation Substrate in Dogs With Ventricular Tachypacing–Induced Congestive Heart Failure , 2001, Circulation.

[6]  D. Clapham,et al.  Evaluation of the role of I(KACh) in atrial fibrillation using a mouse knockout model. , 2001, Journal of the American College of Cardiology.

[7]  Yusong He,et al.  A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. , 2005, Biochemical and biophysical research communications.

[8]  A. Goette,et al.  Calpains and cytokines in fibrillating human atria. , 2002, American journal of physiology. Heart and circulatory physiology.

[9]  R F Bosch,et al.  Ionic mechanisms of electrical remodeling in human atrial fibrillation. , 1999, Cardiovascular research.

[10]  J. Nerbonne,et al.  Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. , 1997, Circulation research.

[11]  J. Nerbonne,et al.  Atrial L-type Ca2+ currents and human atrial fibrillation. , 1999, Circulation research.

[12]  S. Nattel,et al.  Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways. , 2003, Cardiovascular research.

[13]  Jingdong Li,et al.  Transgenic upregulation of IK1 in the mouse heart leads to multiple abnormalities of cardiac excitability. , 2004, American journal of physiology. Heart and circulatory physiology.

[14]  S Nattel,et al.  Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. , 1997, Circulation research.

[15]  S Nattel,et al.  Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. , 1997, The American journal of physiology.

[16]  M. Rosen,et al.  Age-associated changes in electrophysiologic remodeling: a potential contributor to initiation of atrial fibrillation. , 2005, Cardiovascular research.

[17]  S. Nattel,et al.  Enalapril effects on atrial remodeling and atrial fibrillation in experimental congestive heart failure. , 2002, Cardiovascular research.

[18]  S. Nattel,et al.  Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocytes. , 2001, Cardiovascular research.

[19]  Ursula Ravens,et al.  Human inward rectifier potassium channels in chronic and postoperative atrial fibrillation. , 2002, Cardiovascular research.

[20]  S. Nattel New ideas about atrial fibrillation 50 years on , 2002, Nature.

[21]  Leif Hove-Madsen,et al.  Atrial Fibrillation Is Associated With Increased Spontaneous Calcium Release From the Sarcoplasmic Reticulum in Human Atrial Myocytes , 2004, Circulation.

[22]  U Ravens,et al.  Molecular Basis of Downregulation of G-Protein–Coupled Inward Rectifying K+ Current (IK,ACh) in Chronic Human Atrial Fibrillation: Decrease in GIRK4 mRNA Correlates With Reduced IK,ACh and Muscarinic Receptor–Mediated Shortening of Action Potentials , 2001, Circulation.

[23]  Zoltan Szalay,et al.  Structural correlate of atrial fibrillation in human patients. , 2002, Cardiovascular research.

[24]  D. Dobrev,et al.  The G Protein–Gated Potassium Current IK,ACh Is Constitutively Active in Patients With Chronic Atrial Fibrillation , 2005, Circulation.

[25]  M. Allessie,et al.  Atrial fibrillation-induced atrial contractile dysfunction: a tachycardiomyopathy of a different sort. , 2002, Cardiovascular research.

[26]  Lippincott Williams Wilkins,et al.  The Sicilian gambit. A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. , 1991, Circulation.

[27]  Nolwenn Le Meur,et al.  Human Atrial Ion Channel and Transporter Subunit Gene-Expression Remodeling Associated With Valvular Heart Disease and Atrial Fibrillation , 2005, Circulation.

[28]  A. Ducharme,et al.  Enalapril Decreases the Incidence of Atrial Fibrillation in Patients With Left Ventricular Dysfunction Insight From the Studies Of Left Ventricular Dysfunction (SOLVD) Trials , 2003, Circulation.

[29]  M. Mansour,et al.  Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. , 2002, Cardiovascular research.

[30]  M. Allessie,et al.  Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. , 1995, Circulation.

[31]  J. Hell,et al.  Regulation of Cardiac L-Type Calcium Channels by Protein Kinase A and Protein Kinase C , 2000, Circulation research.

[32]  José Jalife,et al.  Cholinergic atrial fibrillation: I(K,ACh) gradients determine unequal left/right atrial frequencies and rotor dynamics. , 2003, Cardiovascular research.

[33]  M. Rosen,et al.  Defective Cardiac Ryanodine Receptor Regulation During Atrial Fibrillation , 2005, Circulation.

[34]  J Clémenty,et al.  Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. , 1998, The New England journal of medicine.

[35]  Ursula Ravens,et al.  Remodeling of cardiomyocyte ion channels in human atrial fibrillation , 2003, Basic Research in Cardiology.

[36]  José Jalife,et al.  Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation. , 2005, Biophysical journal.

[37]  S. Nattel,et al.  Dissociation Between Ionic Remodeling and Ability to Sustain Atrial Fibrillation During Recovery From Experimental Congestive Heart Failure , 2004, Circulation.

[38]  Stanley Nattel,et al.  Characterization of a hyperpolarization‐activated time‐dependent potassium current in canine cardiomyocytes from pulmonary vein myocardial sleeves and left atrium , 2004, The Journal of physiology.