Eigenvalue inequalities for the p-Laplacian operator on C-totally real submanifolds in Sasakian space forms

ABSTRACT The main objective of this paper is to provide various estimates of the first eigenvalue of the p-Laplacian operator on a closed oriented n-dimensional C-totally real submanifold in a simply connected Sasakian space form with a constant ϕ-sectional curvature κ. As applications, we generalize the Reilly-type inequality for the Laplacian [Chen and Wei. Reilly-type inequalities for p-Laplacian on submanifolds in space forms. Nonlinear Anal. 2019;84:210–217; Du and Mao. Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds. Front Math China. 2015;10(3):583–594] to the p-Laplacian for C-totally real submanifold in a sphere , for a constant curvature and p = 2.

[1]  Xianfeng Wang,et al.  Sharp Reilly-type inequalities for a class of elliptic operators on submanifolds , 2019, Differential Geometry and its Applications.

[2]  L. Piscoran,et al.  Geometric classification of warped products isometrically immersed into Sasakian space forms , 2018, Mathematische Nachrichten.

[3]  Changwei Xiong Eigenvalue estimates of Reilly type in product manifolds and eigenvalue comparison for strip domains , 2018, Differential Geometry and its Applications.

[4]  C. Xia,et al.  Estimates for eigenvalues of the Wentzell–Laplace operator , 2018, Journal of Geometry and Physics.

[5]  Hang Chen,et al.  Reilly-type inequalities for p-Laplacian on submanifolds in space forms , 2018, Nonlinear Analysis.

[6]  Casey Blacker,et al.  First eigenvalue of the $p$-Laplacian on Kähler manifolds , 2018, Proceedings of the American Mathematical Society.

[7]  Qun He,et al.  Reilly-Type Inequalities for the First Eigenvalue of p-Laplacian of Submanifolds in Minkowski Spaces , 2017 .

[8]  S. Seto,et al.  First eigenvalue of the $p$-Laplacian under integral curvature condition , 2017, 1707.04763.

[9]  A. Mondino,et al.  Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds , 2015, 1505.02061.

[10]  Jing Mao,et al.  Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds , 2015 .

[11]  T. Sasahara A class of biminimal Legendrian submanifolds in Sasakian space forms , 2014 .

[12]  A. Matei Conformal bounds for the first eigenvalue of the p-Laplacian , 2013 .

[13]  A. Naber,et al.  Sharp estimates on the first eigenvalue of the $$p$$p-Laplacian with negative Ricci lower bound , 2012, 1208.3507.

[14]  Yijun He Reilly type inequality for the first eigenvalue of the $L_{r; F}$ operator , 2011, 1112.2236.

[15]  Daniele Valtorta Sharp estimate on the first eigenvalue of the p-Laplacian , 2011, 1102.0539.

[16]  Haizhong Li,et al.  Second Eigenvalue of Paneitz Operators and Mean Curvature , 2010, 1010.3104.

[17]  I. Mihai Ideal C-totally real submanifolds in Sasakian space forms , 2003 .

[18]  Yu. A. Aminov The Geometry of Submanifolds , 2001 .

[19]  A. Matei First eigenvalue for the p -Laplace operator , 2000 .

[20]  A. E. Soufi,et al.  Une inégalité du type “Reilly” pour les sous-variétés de l'espace hyperbolique , 1992 .

[21]  Shing-Tung Yau,et al.  A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces , 1982 .

[22]  R. Reilly On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space , 1977 .

[23]  Shiu-yuen Cheng,et al.  Eigenvalue comparison theorems and its geometric applications , 1975 .

[24]  He-zi Lin Eigenvalue estimate and gap theorems for submanifolds in the hyperbolic space , 2017 .

[25]  B. Andrews Moduli of continuity, isoperimetric profiles, and multi-point estimates in geometric heat equations , 2014 .

[26]  Ahmad El Soufi,et al.  Second Eigenvalue of Schrödinger Operators¶and Mean Curvature , 2000 .

[27]  S. Chern Minimal submanifolds in a Riemannian manifold , 1968 .