A successive quadratic approximations method for nonlinear eigenvalue problems

Numerical methods for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter are discussed. We propose a successive quadratic approximations method, which reduces the nonlinear eigenvalue problem into a sequence of quadratic problems. The convergence for the new method is investigated. Numerical experiments illustrate the effectiveness of the method.

[1]  Lidia Aceto,et al.  On the A-stable methods in the GBDF class , 2002 .

[2]  D. Kressner,et al.  Chebyshev interpolation for nonlinear eigenvalue problems , 2012 .

[3]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[4]  Heinrich Voß,et al.  Numerical methods for sparse nonlinear eigenvalue problems , 2004 .

[5]  Jerzy S. Respondek Recursive numerical recipes for the high efficient inversion of the confluent Vandermonde matrices , 2013, Appl. Math. Comput..

[6]  V. Mehrmann,et al.  Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .

[7]  H. Voss An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .

[8]  Axel Ruhe ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .

[9]  Timo Betcke,et al.  A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..

[10]  Jerzy Stefan Respondek,et al.  Numerical recipes for the high efficient inverse of the confluent Vandermonde matrices , 2011, Appl. Math. Comput..

[11]  Axel Ruhe The Rational Krylov Algorithm for Nonlinear Matrix Eigenvalue Problems , 2003 .

[12]  D. Trigiante,et al.  The stability problem for linear multistep methods: Old and new results , 2007 .

[13]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[14]  H. Voss An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems , 2003 .

[15]  Heinrich Voss,et al.  A Jacobi-Davidson Method for Nonlinear Eigenproblems , 2004, International Conference on Computational Science.

[16]  P. Lancaster,et al.  Linearization of matrix polynomials expressed in polynomial bases , 2008 .

[17]  H. Voss A RATIONAL SPECTRAL PROBLEM IN FLUID-SOLID VIBRATION , 2003 .

[18]  V. Mehrmann,et al.  Palindromic Polynomial Eigenvalue Problems:Good Vibrations from Good Linearizations , 2006 .

[19]  Wim Michiels,et al.  A linear eigenvalue algorithm for the nonlinear eigenvalue problem , 2012, Numerische Mathematik.

[20]  Daniel Kressner,et al.  A block Newton method for nonlinear eigenvalue problems , 2009, Numerische Mathematik.

[21]  Elias Jarlebring spectrum of delay-differential equationsThe : numerical methods, stability and perturbation , 2008 .

[22]  S. I. Solov'ëv,et al.  Preconditioned iterative methods for a class of nonlinear eigenvalue problems , 2006 .

[23]  H. V. D. Vorst,et al.  Quadratic eigenproblems are no problem , 1996 .

[24]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[25]  Kathrin Schreiber,et al.  Nonlinear Eigenvalue Problems: Newton-type Methods and Nonlinear Rayleigh Functionals , 2008 .

[26]  A. Neumaier RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .

[27]  C. Conca,et al.  Existence and location of eigenvalues for fluid-solid structures , 1990 .

[28]  K. E. Chu,et al.  Derivatives of Eigenvalues and Eigenvectors of Matrix Functions , 1993, SIAM J. Matrix Anal. Appl..

[29]  Wen-Wei Lin,et al.  Numerical Solution of Quadratic Eigenvalue Problems with Structure-Preserving Methods , 2002, SIAM J. Sci. Comput..