Use of standardized bioinformatics for the analysis of fungal DNA signatures applied to sample provenance.

[1]  Matthew J. Gebert,et al.  Global forensic geolocation with deep neural networks , 2019, Journal of the Royal Statistical Society: Series C (Applied Statistics).

[2]  Francesco Asnicar,et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 , 2019, Nature Biotechnology.

[3]  H. H. Bruun,et al.  Predicting provenance of forensic soil samples: Linking soil to ecological habitats by metabarcoding and supervised classification , 2019, PloS one.

[4]  A. Chamberlain,et al.  Metabarcoding to investigate changes in soil microbial communities within forensic burial contexts. , 2019, Forensic science international. Genetics.

[5]  August E. Woerner,et al.  Forensic human identification with targeted microbiome markers using nearest neighbor classification. , 2019, Forensic science international. Genetics.

[6]  David O. Carter,et al.  Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models , 2018, Genes.

[7]  N. Fierer,et al.  A global atlas of the dominant bacteria found in soil , 2018, Science.

[8]  August E. Woerner,et al.  Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification. , 2018, Forensic science international. Genetics.

[9]  Rick L. Stevens,et al.  A communal catalogue reveals Earth’s multiscale microbial diversity , 2017, Nature.

[10]  August E. Woerner,et al.  Forensic Human Identification Using Skin Microbiomes , 2017, Applied and Environmental Microbiology.

[11]  Ira W. Deveson,et al.  Reference standards for next-generation sequencing , 2017, Nature Reviews Genetics.

[12]  Paul J. McMurdie,et al.  Exact sequence variants should replace operational taxonomic units in marker-gene data analysis , 2017, The ISME Journal.

[13]  Nathan H. Lents,et al.  A Machine Learning Approach for Using the Postmortem Skin Microbiome to Estimate the Postmortem Interval , 2016, PloS one.

[14]  P. Wiltshire Mycology in palaeoecology and forensic science. , 2016, Fungal biology.

[15]  Robert C. Edgar,et al.  UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing , 2016, bioRxiv.

[16]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[17]  D. Foran,et al.  Next‐Generation Sequencing of the Bacterial 16S rRNA Gene for Forensic Soil Comparison: A Feasibility Study , 2016, Journal of forensic sciences.

[18]  Matthew J. Gebert,et al.  Microbial community assembly and metabolic function during mammalian corpse decomposition , 2016, Science.

[19]  D. Hawksworth,et al.  Forensic mycology: current perspectives , 2015 .

[20]  D. Hawksworth,et al.  Two sources and two kinds of trace evidence: Enhancing the links between clothing, footwear and crime scene. , 2015, Forensic science international.

[21]  J. DeBruyn,et al.  Functional and Structural Succession of Soil Microbial Communities below Decomposing Human Cadavers , 2015, PloS one.

[22]  K. Pollard,et al.  Continental-scale distributions of dust-associated bacteria and fungi , 2015, Proceedings of the National Academy of Sciences.

[23]  Eric B. Laber,et al.  Fungi Identify the Geographic Origin of Dust Samples , 2015, PloS one.

[24]  A. Sajantila,et al.  Validation of high throughput sequencing and microbial forensics applications , 2014, Investigative Genetics.

[25]  L. Ripani,et al.  The environmental biological signature: NGS profiling for forensic comparison of soils. , 2014, Forensic science international.

[26]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[27]  Matthew J. Gebert,et al.  A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system , 2013, eLife.

[28]  A. M. Tarone,et al.  The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing , 2013, International Journal of Legal Medicine.

[29]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[30]  R. Knight,et al.  Forensic identification using skin bacterial communities , 2010, Proceedings of the National Academy of Sciences.

[31]  R. Knight,et al.  The influence of sex, handedness, and washing on the diversity of hand surface bacteria , 2008, Proceedings of the National Academy of Sciences.

[32]  A. Brown,et al.  The use of forensic botany and geology in war crimes investigations in NE Bosnia. , 2006, Forensic science international.

[33]  Henry C. Lee,et al.  The Use of Biological and Botanical Evidence in Criminal Investigations , 2004 .

[34]  B. H. Kaye Science and the Detective: Selected Reading in Forensic Science , 1996 .

[35]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[36]  E. Locard The Analysis of Dust Traces. Part III , 1930 .

[37]  E. Thorndike The influence of sex. , 1914 .