Multispectral images of Mercury from the first MESSENGER flyby: Analysis of global and regional color trends

Abstract We have analyzed MESSENGER multispectral images of Mercury in order to gain information on the nature of materials present on the planet's surface. The quantitative analysis tools of Lucey, which are built on the Hapke conceptual framework for the reflectance of a silicate regolith, allow us to derive spectral parameter images that are sensitive to the abundance of ferrous iron in silicates, the abundance of opaque phases, and the state of maturity of the surface. Consistent with previous estimates, we conclude that the silicate portion of Mercury's surface is low in ferrous iron, with a small range of variation. The spectral changes that accompany regolith maturation on Mercury are consistent with lunar-style space weathering via the accumulation of nanophase iron. The spectral character of Mercury's major surface units (high-reflectance plains, intermediate terrain, and low-reflectance material) can be attributed to variations in the abundance of an opaque phase(s). A class of minor color unit, the red spots, occurs in at least three morphological varieties, two of which are associated with deposits interpreted to be of pyroclastic origin. The bright crater floor deposits, a second type of minor unit, have extremely shallow (“blue”) spectral slopes that are unrelated to the presence of immature material.

[1]  J. Head,et al.  Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement , 2003 .

[2]  M. Zuber,et al.  Return to Mercury: A Global Perspective on MESSENGER's First Mercury Flyby , 2008, Science.

[3]  E. Whitaker,et al.  Lunar color boundaries and their relationship to topographic features: A preliminary survey , 1972 .

[4]  Paul G. Lucey,et al.  Imaging of lunar surface maturity , 2000 .

[5]  Paul G. Lucey,et al.  Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery , 1998 .

[6]  Faith Vilas,et al.  Surface composition of Mercury from reflectance spectrophotometry , 1988 .

[7]  MESSENGER GLOBAL COLOR OBSERVATIONS: IMPLICATIONS FOR THE COMPOSITION AND EVOLUTION OF MERCURY’S CRUST , 2009 .

[8]  D. Blewett,et al.  Remote sensing and geological studies of the Hadley‐Apennine region of the Moon , 2001 .

[9]  P. Schultz Endogenic modification of impact craters on Mercury , 1977 .

[10]  D. Mitchell,et al.  Microwave Imaging of Mercury's Thermal Emission at Wavelengths from 0.3 to 20.5 cm , 1994 .

[11]  S. Murchie,et al.  Color Variations on Eros from NEAR Multispectral Imaging , 2002 .

[12]  J. Warell,et al.  Albedo-color distribution on Mercury A photometric study of the poorly known hemisphere , 2006 .

[13]  Roger N. Clark,et al.  The Mercury soil: Presence of Fe2+ , 1979 .

[14]  Clark R. Chapman,et al.  Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains , 2009 .

[15]  Y. Shkuratov,et al.  Iron and Titanium Abundance and Maturity Degree Distribution on the Lunar Nearside , 1999 .

[16]  Mark R. Lankton,et al.  The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER Mission , 2007 .

[17]  Paul G. Lucey,et al.  Lunar pure anorthosite as a spectral analog for Mercury , 2002 .

[18]  Paul D. Spudis,et al.  Stratigraphy and geologic history of Mercury , 1988 .

[19]  R. Jeanloz,et al.  Evidence for a basalt-free surface on Mercury and implications for internal heat. , 1995, Science.

[20]  Johan Warell,et al.  Properties of the Hermean regolith: IV. Photometric parameters of Mercury and the Moon contrasted with Hapke modelling , 2004 .

[21]  Bruce A. Campbell,et al.  The origin of lunar crater rays , 2000 .

[22]  C. Pieters,et al.  Integrated Spectral Analysis of Mare Soils and Craters: Applications to Eastern Nearside Basalts , 2000 .

[23]  Bruce Hapke,et al.  Space weathering from Mercury to the asteroid belt , 2001 .

[24]  W. Irvine,et al.  Multicolor photoelectric photometry of the brighter planets. I. , 1967 .

[25]  B. Hapke,et al.  A color-ratio map of Mercury. , 1980 .

[26]  G. J. Taylor,et al.  Distribution and modes of occurrence of lunar anorthosite , 2003 .

[27]  D. Dzurisin Mercurian bright patches: Evidence for physio‐chemical alteration of surface material? , 1977 .

[28]  R. C. Elphic,et al.  A revised algorithm for calculating TiO2 from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiO2 concentrations , 2003 .

[29]  Bruce Hapke,et al.  Effects of vapor-phase deposition processes on the optical, chemical, and magnetic properties OE the lunar regolith , 1975 .

[30]  Bruce Hapke,et al.  An analysis of the Mariner 10 color ratio map of mercury , 1987 .

[31]  P. Lucey,et al.  Nature of opaque components on Mercury: Insights into a Mercurian magma ocean , 2009 .

[32]  J. Head,et al.  Gruithuisen domes region: A candidate for an extended nonmare volcanism unit on the Moon , 1999 .

[33]  Paul G. Lucey,et al.  Clementine images of the lunar sample‐return stations: Refinement of FeO and TiO2 mapping techniques , 1997 .

[34]  P. Lucey,et al.  A Mariner 10 color study of Mercurian craters , 2007 .

[35]  G. J. Taylor,et al.  Abundance and Distribution of Iron on the Moon , 1995, Science.

[36]  S. Murchie,et al.  Spectroscopic Observations of Mercury's Surface Reflectance During MESSENGER's First Mercury Flyby , 2008, Science.

[37]  T. McCord,et al.  Mercury: Surface Composition from the Reflection Spectrum , 1972, Science.

[38]  S. Murchie,et al.  Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains , 2009 .

[39]  D. Vaniman,et al.  Refined thorium abundances for lunar red spots: Implications for evolved, nonmare volcanism on the Moon , 2006 .

[40]  Richard V. Morris,et al.  Space weathering on airless bodies: Resolving a mystery with lunar samples , 2000 .

[41]  Paul G. Lucey,et al.  Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet‐visible images , 2000 .

[42]  Carle M. Pieters,et al.  Mineralogy of the lunar crust: Results from Clementine , 1999 .

[43]  S. Solomon,et al.  MESSENGER and the Chemistry of Mercury’s Surface , 2007 .

[44]  P. W. Francis Remote Geochemical Analysis; Elemental and Mineralogical Composition , 1994 .

[45]  P. Lucey,et al.  Testing the relation between UV–vis color and TiO2 content of the lunar maria , 2006 .

[46]  Mark J. Cintala,et al.  Impact‐induced thermal effects in the lunar and Mercurian regoliths , 1992 .

[47]  S. Solomon,et al.  MESSENGER Mission Overview , 2007 .

[48]  Paul G. Lucey,et al.  Experimental test of a radiative transfer model of the optical effects of space weathering , 2008 .

[49]  Bruce Hapke,et al.  Interpretations of optical observations of Mercury and the moon , 1977 .

[50]  Alfred S. McEwen,et al.  Optical maturity of ejecta from large rayed lunar craters , 2001 .

[51]  M. Malin Lunar red spots: Possible pre-mare materials , 1974 .

[52]  Richard V. Morris,et al.  The optical properties of the finest fraction of lunar soil: Implications for space weathering , 2001 .

[53]  Paul G. Lucey,et al.  A Comparison of Mercurian Reflectance and Spectral Quantities with Those of the Moon , 1997 .

[54]  T V Johnson,et al.  Galileo Multispectral Imaging of the North Polar and Eastern Limb Regions of the Moon , 1994, Science.

[55]  M. Robinson,et al.  Mercury's albedo from Mariner 10: Implications for the presence of ferrous iron , 2008 .

[56]  S. E. Hawkins,et al.  Reflectance and Color Variations on Mercury: Regolith Processes and Compositional Heterogeneity , 2008, Science.

[57]  Johan Warell,et al.  Properties of the Hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modelling , 2004 .

[58]  M E Davies,et al.  Mercury's Surface: Preliminary Description and Interpretation from Mariner 10 Pictures , 1974, Science.

[59]  Paul G. Lucey,et al.  Recalibrated Mariner 10 Color Mosaics: Implications for Mercurian Volcanism , 1997, Science.

[60]  Paul G. Lucey,et al.  Mapping iron in the lunar mare: An improved approach , 2005 .

[61]  J. Warell,et al.  Properties of the hermean regolith: iii. disk-resolved vis-NIR reflectance spectra and implications for the abundance of iron* , 2003 .

[62]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[63]  Carle M. Pieters,et al.  Space Weathering on Mercury: Implications for Remote Sensing , 2003 .

[64]  Mark S. Robinson,et al.  Ferrous oxide in Mercury's crust and mantle , 2001 .

[65]  Clark R. Chapman,et al.  The MESSENGER mission to Mercury: Scientific objectives and implementation , 2001 .

[66]  Carle M. Pieters,et al.  An experimental approach to understanding the optical effects of space weathering , 2007 .

[67]  Donald H. Menzel,et al.  Multicolor photoelectric photometry of the brighter planets. III - Observations from Boyden Observatory. , 1968 .

[68]  S. Murchie,et al.  Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances , 2008 .

[69]  Lionel Wilson,et al.  Photometric observations of Mercury from Mariner 10 , 1975 .

[70]  Clark R. Chapman,et al.  Geology of the Caloris Basin, Mercury: A View from MESSENGER , 2008, Science.

[71]  B. Hapke,et al.  Lunar Soil: Iron and Titanium Bands in the Glass Fraction , 1977, Science.

[72]  Erick R. Malaret,et al.  The Mercury Dual Imaging System on the MESSENGER Spacecraft , 2007 .

[73]  Johan Warell,et al.  The 0.7–5.3 μm IR spectra of Mercury and the Moon: Evidence for high-Ca clinopyroxene on Mercury , 2006 .

[74]  Properties of the hermean regolith. II. Disk-resolved multicolor photometry and color variations of the unknown hemisphere , 2002 .

[75]  Carle M. Pieters,et al.  Remote Determination of Exposure Degree and Iron Concentration of Lunar Soils Using VIS-NIR Spectroscopic Methods , 1994 .

[76]  P. Lucey,et al.  High-resolution UV-visible spectroscopy of lunar red spots , 1991 .