Embedding Capabilities of Neural ODEs
暂无分享,去创建一个
[1] Han Zhang,et al. Approximation Capabilities of Neural ODEs and Invertible Residual Networks , 2019, ICML.
[2] Yee Whye Teh,et al. Augmented Neural ODEs , 2019, NeurIPS.
[3] C. Aggarwal. Neural Networks and Deep Learning: A Textbook , 2018 .
[4] Stefanie Jegelka,et al. ResNet with one-neuron hidden layers is a Universal Approximator , 2018, NeurIPS.
[5] David Duvenaud,et al. Neural Ordinary Differential Equations , 2018, NeurIPS.
[6] Tomaso A. Poggio,et al. Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex , 2016, ArXiv.
[7] Jian Sun,et al. Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[8] Eric A Sobie,et al. An Introduction to Dynamical Systems , 2011, Science Signaling.
[9] Barbara Hammer,et al. Learning with recurrent neural networks , 2000 .
[10] Allan Pinkus,et al. Approximation theory of the MLP model in neural networks , 1999, Acta Numerica.
[11] M. Kuczma,et al. Iterative Functional Equations , 1990 .
[12] Kurt Hornik,et al. Multilayer feedforward networks are universal approximators , 1989, Neural Networks.
[13] D. Gronau,et al. Some Differential Equations Related to Iteration Theory , 1988, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.
[14] Geoffrey E. Hinton,et al. Learning internal representations by error propagation , 1986 .
[15] R. Palais. The Morse lemma for Banach spaces , 1969 .
[16] S. A. Andrea,et al. On homeomorphisms of the plane, and their embedding in flows , 1965 .
[17] Marston Morse,et al. Topologically non-degenerate functions on a compactn-manifoldM , 1959 .
[18] M. K. Fort,et al. THE EMBEDDING OF HOMEOMORPHISMS IN FLOWS , 1955 .
[19] H. Whitney. The Self-Intersections of a Smooth n-Manifold in 2n-Space , 1944 .
[20] A. Sard,et al. The measure of the critical values of differentiable maps , 1942 .
[21] M. Morse. The Calculus of Variations in the Large , 1934 .
[22] J. Junker. Introduction To Approximation Theory , 2016 .
[23] Susanne Ebersbach,et al. Basic Theory Of Ordinary Differential Equations , 2016 .
[24] Mandy Eberhart,et al. Ordinary Differential Equations With Applications , 2016 .
[25] A. Blumberg. BASIC TOPOLOGY , 2002 .
[26] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[27] H. Alt. Lineare Funktionalanalysis : eine anwendungsorientierte Einführung , 2002 .
[28] G. Belitskii,et al. The Abel equation and total solvability of linear functional equations , 1998, Studia Mathematica.
[29] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[30] L. Nirenberg,et al. Mitio Nagumo Collected Papers , 1993 .
[31] M. Zdun. On the regular solutions of a linear functional equation , 1974 .
[32] J. Cantwell. Topological non-degenerate functions , 1968 .
[33] William K. Holstein,et al. The Mathematical Theory of Optimal Processes , 1965 .
[34] A. Morse,et al. The Behavior of a Function on Its Critical Set , 1939 .
[35] É. Picard. Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives , 1890 .