Rapid and Sensitive Diagnosis of Leber Hereditary Optic Neuropathy Variants Using CRISPR/Cas12a Detection.

[1]  T. Klopstock,et al.  Vitamin B12 in Leber hereditary optic neuropathy mutation carriers: a prospective cohort study , 2022, Orphanet Journal of Rare Diseases.

[2]  Ming Liu,et al.  EasyCatch, a convenient, sensitive and specific CRISPR detection system for cancer gene mutations , 2021, Molecular cancer.

[3]  F. Zhou,et al.  Rapid and Sensitive Diagnosis of Drug-Resistant FLT3-F691L Mutation by CRISPR Detection , 2021, Frontiers in Molecular Biosciences.

[4]  J. Collins,et al.  CRISPR-based diagnostics , 2021, Nature Biomedical Engineering.

[5]  Matthew S. McNeill,et al.  AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines , 2021, Nature Communications.

[6]  C. Vignal-Clermont,et al.  Leber Hereditary Optic Neuropathy: Review of Treatment and Management , 2021, Frontiers in Neurology.

[7]  P. Yu-Wai-Man,et al.  Leber hereditary optic neuropathy—new insights and old challenges , 2020, Graefe's Archive for Clinical and Experimental Ophthalmology.

[8]  Xingyu Jiang,et al.  Reagents-Loaded, Automated Assay that Integrates Recombinase-Aided Amplification and Cas12a Nucleic Acid Detection for a Point-of-Care Test. , 2020, Analytical chemistry.

[9]  Xiaolong Liu,et al.  An isothermal method for sensitive detection of Mycobacterium tuberculosis complex using CRISPR/Cas12a cis- and trans-cleavage. , 2020, The Journal of molecular diagnostics : JMD.

[10]  Zi-feng Yang,et al.  Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER , 2020, Science Bulletin.

[11]  Qin Zhao,et al.  CRISPR/Cas12a technology combined with immunochromatographic strips for portable detection of African swine fever virus , 2020, Communications Biology.

[12]  Yusen Zhou,et al.  CRISPR-Cas13a Cleavage of Dengue Virus NS3 Gene Efficiently Inhibits Viral Replication , 2020, Molecular therapy. Nucleic acids.

[13]  Xingxu Huang,et al.  Next-generation pathogen diagnosis with CRISPR/Cas-based detection methods , 2020, Emerging microbes & infections.

[14]  Guozhen Liu,et al.  CRISPR/Cas Systems towards Next-Generation Biosensing. , 2019, Trends in biotechnology.

[15]  Jennifer A. Doudna,et al.  CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity , 2018, Science.

[16]  Patrick F. Chinnery,et al.  The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease , 2015, Nature Reviews Genetics.

[17]  M. Votruba,et al.  Treatment strategies for inherited optic neuropathies: past, present and future , 2014, Eye.

[18]  Yong-Gang Yao,et al.  Screening the three LHON primary mutations in the general Chinese population by using an optimized multiplex allele-specific PCR. , 2010, Clinica chimica acta; international journal of clinical chemistry.

[19]  P. Chinnery,et al.  Gene–environment interactions in Leber hereditary optic neuropathy , 2009, Brain : a journal of neurology.

[20]  K. Huoponen,et al.  Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland , 2007, European Journal of Human Genetics.

[21]  Xueshan Xiao,et al.  Molecular epidemiology of mtDNA mutations in 903 Chinese families suspected with Leber hereditary optic neuropathy , 2006, Journal of Human Genetics.

[22]  H. Smeets,et al.  Influence of mutation type on clinical expression of Leber hereditary optic neuropathy. , 2006, American journal of ophthalmology.

[23]  D. Turnbull,et al.  The epidemiology of Leber hereditary optic neuropathy in the North East of England. , 2003, American journal of human genetics.

[24]  D. Turnbull,et al.  Leber hereditary optic neuropathy , 2002, Journal of medical genetics.

[25]  D. Mackey,et al.  Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. , 1996, American journal of human genetics.

[26]  D. Wallace,et al.  Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. , 1988, Science.