Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2

[1]  N. Gray,et al.  Inhibition of the deubiquitinase USP10 induces degradation of SYK , 2020, British Journal of Cancer.

[2]  Robert S. Magin,et al.  Advances in Discovering Deubiquitinating Enzyme (DUB) Inhibitors. , 2020, Journal of medicinal chemistry.

[3]  Zhihua Liu,et al.  JOSD1 inhibits mitochondrial apoptotic signalling to drive acquired chemoresistance in gynaecological cancer by stabilizing MCL1 , 2019, Cell Death & Differentiation.

[4]  B. Lagu,et al.  Novel highly selective inhibitors of ubiquitin specific protease 30 (USP30) accelerate mitophagy. , 2018, Bioorganic & medicinal chemistry letters.

[5]  W. Vainchenker,et al.  JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders , 2018, F1000Research.

[6]  K. Anderson,et al.  Structure-Guided Development of a Potent and Selective Non-covalent Active-Site Inhibitor of USP7. , 2017, Cell chemical biology.

[7]  A. Letai,et al.  Inhibition of USP10 induces degradation of oncogenic FLT3. , 2017, Nature chemical biology.

[8]  Youyong Li,et al.  How Does the L884P Mutation Confer Resistance to Type-II Inhibitors of JAK2 Kinase: A Comprehensive Molecular Modeling Study , 2017, Scientific Reports.

[9]  Peng Zhao,et al.  JOSD1 Negatively Regulates Type-I Interferon Antiviral Activity by Deubiquitinating and Stabilizing SOCS1. , 2017, Viral immunology.

[10]  H. Band,et al.  CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies , 2017, Genes & development.

[11]  N. Komatsu,et al.  Somatic mutations of calreticulin in myeloproliferative neoplasms , 2017, International Journal of Hematology.

[12]  N. Komatsu,et al.  Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. , 2016, Blood.

[13]  Patrick W. Faloon,et al.  Kinase-Independent Small-Molecule Inhibition of JAK-STAT Signaling. , 2015, Journal of the American Chemical Society.

[14]  R. Levine,et al.  Molecular Pathways Molecular Pathways : Molecular Basis for Sensitivity and Resistance to JAK Kinase Inhibitors , 2014 .

[15]  G. Superti-Furga,et al.  Somatic mutations of calreticulin in myeloproliferative neoplasms. , 2013, The New England journal of medicine.

[16]  M. Severgnini,et al.  Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms. , 2013, Blood.

[17]  I. Behrmann,et al.  JAK2 mutants (e.g., JAK2V617F) and their importance as drug targets in myeloproliferative neoplasms , 2013, JAK-STAT.

[18]  Lin Dong,et al.  Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. , 2013, Biochimica et biophysica acta.

[19]  W. Sellers,et al.  Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. , 2012, Cancer discovery.

[20]  Z. Estrov,et al.  Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia. , 2012, Blood.

[21]  Jason Gotlib,et al.  A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. , 2012, The New England journal of medicine.

[22]  Francisco Cervantes,et al.  JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. , 2012, The New England journal of medicine.

[23]  B. Bernstein,et al.  Heterodimeric JAK-STAT Activation as a Mechanism of Persistence to JAK2 Inhibitor Therapy , 2011, Nature.

[24]  A. Levitzki,et al.  A novel small molecule deubiquitinase inhibitor blocks Jak2 signaling through Jak2 ubiquitination. , 2011, Cellular signalling.

[25]  G. Dianov,et al.  Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. , 2011, Chemistry & biology.

[26]  N. Donato,et al.  Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. , 2010, Cancer research.

[27]  Ayalew Tefferi,et al.  Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. , 2010, The New England journal of medicine.

[28]  H. Kantarjian,et al.  Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. , 2010, Blood.

[29]  M. Tomasson,et al.  The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. , 2008, Blood.

[30]  P. Campbell,et al.  The myeloproliferative disorders. , 2006, The New England journal of medicine.

[31]  Sandra A. Moore,et al.  MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia , 2006, PLoS medicine.

[32]  R. Levine,et al.  Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. , 2006, Blood.

[33]  Stefan N. Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera , 2005, Nature.

[34]  Mario Cazzola,et al.  A gain-of-function mutation of JAK2 in myeloproliferative disorders. , 2005, The New England journal of medicine.

[35]  Sandra A. Moore,et al.  Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. , 2005, Cancer cell.

[36]  P. Campbell,et al.  Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders , 2005, The Lancet.

[37]  D. Hilton,et al.  Regulation of Jak2 through the Ubiquitin-Proteasome Pathway Involves Phosphorylation of Jak2 on Y1007 and Interaction with SOCS-1 , 2002, Molecular and Cellular Biology.

[38]  Martin Scheffner,et al.  Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade , 1995, Nature.

[39]  S. Schwartz Myeloproliferative Disorders , 1975, Annals of surgery.