Two-grid optimality for Galerkin linear systems based on B-splines

A multigrid method for linear systems stemming from the Galerkin B-spline discretization of classical second-order elliptic problems is considered. The spectral features of the involved stiffness matrices, as the fineness parameter h tends to zero, have been deeply studied in previous works, with particular attention to the dependencies of the spectrum on the degree p of the B-splines used in the discretization process. Here, by exploiting this information in connection with $$\tau $$τ-matrices, we describe a multigrid strategy and we prove that the corresponding two-grid iterations have a convergence rate independent of h for $$p=1,2,3$$p=1,2,3. For larger p, the proof may be obtained through algebraic manipulations. Unfortunately, as confirmed by the numerical experiments, the dependence on p is bad and hence other techniques have to be considered for large p.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[3]  S. Serra,et al.  Multi-iterative methods , 1993 .

[4]  Hendrik Speleers,et al.  On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.

[5]  Stefano Serra Capizzano,et al.  Numerische Mathematik Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002 .

[6]  R. Bhatia Matrix Analysis , 1996 .

[7]  Carlo Garoni Structured matrices coming from PDE approximation theory: spectral analysis, spectral symbol and design of fast iterative solvers. , 2015 .

[8]  Marco Donatelli,et al.  A V-cycle Multigrid for multilevel matrix algebras: proof of optimality , 2007, Numerische Mathematik.

[9]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[10]  Stefano Serra-Capizzano,et al.  Positive representation formulas for finite difference discretizations of (elliptic) second order PDEs , 1999 .

[11]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[12]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[13]  Marco Donatelli,et al.  An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices , 2010, Numer. Linear Algebra Appl..

[14]  Giuseppe Fiorentino,et al.  Multigrid methods for indefinite Toeplitz matrices , 1996 .

[15]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264. , 2015 .

[16]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[17]  Xiao-Qing Jin,et al.  Developments and Applications of Block Toeplitz Iterative Solvers , 2003 .

[18]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .

[19]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[20]  Hendrik Speleers,et al.  Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods , 2017, Math. Comput..

[21]  Stefano Serra Capizzano,et al.  On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..

[22]  Stefano Serra Capizzano,et al.  Spectral and structural analysis of high precision finite difference matrices for elliptic operators , 1999 .

[23]  Hendrik Speleers,et al.  Spectral analysis and spectral symbol of matrices in isogeometric collocation methods , 2015, Math. Comput..

[24]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[25]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[26]  Hendrik Speleers,et al.  Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..