Quaternion higher-order spectra and their invariants for color image recognition

This paper describes an invariants generation method for color images, which could be a useful tool in color object recognition tasks. First, by using the algebra of quaternions, we introduce the definition of quaternion higher-order spectra (QHOS) in the spatial domain and derive its equivalent form in the frequency domain. Then, QHOS invariants with respect to rotation, translation, and scaling transformations for color images are constructed using the central slice theorem and quaternion bispectral analysis. The feature data are further reduced to a smaller set using quatemion principal component analysis. The proposed method can deal with color images in a holistic manner, and the constructed QHOS invariants are highly immune to background noise. Experimental results show that the extracted QHOS invariants form compact and isolated clusters, and that a simple minimum distance classifier can yield high recognition accuracy. (C) 2014 Elsevier Ltd. All rights reserved.

[1]  JEFFREY WOOD,et al.  Invariant pattern recognition: A review , 1996, Pattern Recognit..

[2]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2007, IEEE Trans. Image Process..

[3]  Mehmet Celenk,et al.  Higher-order spectra (HOS) invariants for shape recognition , 2001, Pattern Recognit..

[4]  G. Giannakis Cumulants: A powerful tool in signal processing , 1987, Proceedings of the IEEE.

[5]  Jan Flusser,et al.  On the independence of rotation moment invariants , 2000, Pattern Recognit..

[6]  Nicolas Le Bihan,et al.  Quaternion principal component analysis of color images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[7]  T. Ell Hypercomplex spectral transformations , 1992 .

[8]  Dimitrios S. Alexiadis,et al.  Estimation of Motions in Color Image Sequences Using Hypercomplex Fourier Transforms , 2009, IEEE Transactions on Image Processing.

[9]  Vinod Chandran,et al.  Pattern Recognition Using Invariants Defined From Higher Order Spectra- One Dimensional Inputs , 1993, IEEE Trans. Signal Process..

[10]  Xiaokang Yang,et al.  Color image watermarking using local quaternion Fourier spectral analysis , 2008, 2008 IEEE International Conference on Multimedia and Expo.

[11]  Henning Rasmussen,et al.  Local quaternion Fourier transform and color image texture analysis , 2010, Signal Process..

[12]  Jan Flusser,et al.  Pattern recognition by affine moment invariants , 1993, Pattern Recognit..

[13]  Thomas R. Crimmins A Complete Set of Fourier Descriptors for Two-Dimensional Shapes , 1982, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  Zhengzhi Wang,et al.  Color image registration based on quaternion Fourier transformation , 2012 .

[15]  Ming Zhu,et al.  Quaternion Fourier-Mellin moments for color images , 2011, Pattern Recognit..

[16]  J. P. Ward Quaternions and Cayley Numbers: Algebra and Applications , 1997 .

[17]  B. Boashash,et al.  Pattern recognition using invariants defined from higher order spectra: 2-D image inputs , 1997, IEEE Trans. Image Process..

[18]  Ralph Roskies,et al.  Fourier Descriptors for Plane Closed Curves , 1972, IEEE Transactions on Computers.

[19]  Gang Chen,et al.  Quaternion Zernike moments and their invariants for color image analysis and object recognition , 2012, Signal Process..

[20]  Georgios B. Giannakis,et al.  Translation, rotation and scaling invariant object and texture classification using polyspectra , 1990 .

[21]  Liu Jin,et al.  Fast algorithm for generation of moment invariants , 2004 .

[22]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[23]  E. Powers,et al.  Digital Bispectral Analysis and Its Applications to Nonlinear Wave Interactions , 1979, IEEE Transactions on Plasma Science.

[24]  Vinod Chandran,et al.  Bispectral analysis of two-dimensional random processes , 1990, IEEE Trans. Acoust. Speech Signal Process..

[25]  S. Sangwine Fourier transforms of colour images using quaternion or hypercomplex, numbers , 1996 .

[26]  Gösta H. Granlund,et al.  Fourier Preprocessing for Hand Print Character Recognition , 1972, IEEE Transactions on Computers.

[27]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Trans. Syst. Man Cybern..