Measuring MEG closer to the brain: Performance of on-scalp sensor arrays

[1]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[2]  D. B. Heppner,et al.  Considerations of quasi-stationarity in electrophysiological systems. , 1967, The Bulletin of mathematical biophysics.

[3]  D. Geselowitz On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources , 1970 .

[4]  R. J. Ilmoniemi,et al.  Channel Capacity of Multichannel Magnetometers , 1989 .

[5]  J. D. de Munck A linear discretization of the volume conductor boundary integral equation using analytically integrated elements (electrophysiology application) , 1992, IEEE Transactions on Biomedical Engineering.

[6]  J.C. de Munck,et al.  A random dipole model for spontaneous brain activity , 1992, IEEE Transactions on Biomedical Engineering.

[7]  J. D. Munck A linear discretization of the volume conductor boundary integral equation using analytically integrated elements (electrophysiology application) , 1992 .

[8]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[9]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[10]  C. Michel,et al.  Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography , 1997, Human brain mapping.

[11]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[12]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[13]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[14]  R M Leahy,et al.  A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. , 1999, Physics in medicine and biology.

[15]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[16]  Anders M. Dale,et al.  A hybrid approach to the Skull Stripping problem in MRI , 2001, NeuroImage.

[17]  John W Belliveau,et al.  Monte Carlo simulation studies of EEG and MEG localization accuracy , 2002, Human brain mapping.

[18]  M. Romalis,et al.  High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. , 2002, Physical review letters.

[19]  J. Haueisen,et al.  Information content in single-component versus three-component cardiomagnetic fields , 2004, IEEE Transactions on Magnetics.

[20]  J. Kitching,et al.  Microfabricated alkali atom vapor cells , 2004 .

[21]  Olivier D. Faugeras,et al.  A common formalism for the Integral formulations of the forward EEG problem , 2005, IEEE Transactions on Medical Imaging.

[22]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[23]  A. Dale,et al.  Distributed current estimates using cortical orientation constraints , 2006, Human brain mapping.

[24]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[25]  Seppo P. Ahlfors,et al.  Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates , 2006, NeuroImage.

[26]  Matti Stenroos,et al.  A Matlab library for solving quasi-static volume conduction problems using the boundary element method , 2007, Comput. Methods Programs Biomed..

[27]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[28]  Jan Palczewski,et al.  Monte Carlo Simulation , 2008, Encyclopedia of GIS.

[29]  M. S. Hämäläinen,et al.  Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation , 2008, NeuroImage.

[30]  J. Schoffelen,et al.  Source connectivity analysis with MEG and EEG , 2009, Human brain mapping.

[31]  L. Vaina,et al.  Mapping the signal‐to‐noise‐ratios of cortical sources in magnetoencephalography and electroencephalography , 2009, Human brain mapping.

[32]  M. Weisend,et al.  Magnetoencephalography with a two color pump-probe fiber-coupled atomic magnetometer. , 2010 .

[33]  Olaf Hauk,et al.  Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics , 2011, NeuroImage.

[34]  A. Daffertshofer,et al.  Radial and tangential components of dipolar sources and their magnetic fields , 2012, Clinical Neurophysiology.

[35]  M. Elam,et al.  High-T-c superconducting quantum interference device recordings of spontaneous brain activity: Towards high-T-c magnetoencephalography , 2012 .

[36]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[37]  J. Sarvas,et al.  Bioelectromagnetic forward problem: isolated source approach revis(it)ed , 2012, Physics in medicine and biology.

[38]  J. Kitching,et al.  A low-power, high-sensitivity micromachined optical magnetometer , 2012 .

[39]  R. Wakai,et al.  A compact, high performance atomic magnetometer for biomedical applications , 2013, Physics in medicine and biology.

[40]  E. Riis Optical Magnetometry , 2013 .

[41]  Matti Stenroos,et al.  Minimum-norm cortical source estimation in layered head models is robust against skull conductivity error☆☆☆ , 2013, NeuroImage.

[42]  Justin F. Schneiderman,et al.  Information content with low- vs. high-T c SQUID arrays in MEG recordings: The case for high-T c SQUID-based MEG , 2014, Journal of Neuroscience Methods.

[43]  Martin Luessi,et al.  MNE software for processing MEG and EEG data , 2014, NeuroImage.

[44]  Jens Haueisen,et al.  Comparison of three-shell and simplified volume conductor models in magnetoencephalography , 2014, NeuroImage.

[45]  Thomas R. Knösche,et al.  A guideline for head volume conductor modeling in EEG and MEG , 2014, NeuroImage.

[46]  L. Trahms,et al.  Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers , 2015, Physics in medicine and biology.

[47]  Matthew J. Brookes,et al.  On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study , 2016, PloS one.

[48]  A. Nummenmaa,et al.  Incorporating and Compensating Cerebrospinal Fluid in Surface-Based Forward Models of Magneto- and Electroencephalography , 2016, bioRxiv.