On numerical solution methods for flexural waves in stepped beams

Abstract A detailed literature survey is presented on various numerical solution methods for flexural wave propagation problems. The numerical methods considered are transform methods, finite element methods, finite difference methods and the method of characteristics (MOC). Some numerical solution have been obtained for stepped beams using the MOC and taking into account the effect of wave reflections. Several factors have been found to affect the level of stresses and the associated peak values, the main ones being the diameter ratio and the position of discontinuity. This work demonstrated that the use of the MOC should be encouraged in finding solutions for complicated flexural wave problems, where no other numerical solution method can deliver satisfactory results.

[1]  M. M. Al-Mousawi Transient response of Timoshenko beams with discontinuities of cross-section , 1984 .

[2]  J. Mixson,et al.  Application of pulsed holographic interferometry to the measurement of propagating transverse waves in beams , 1971 .

[3]  L. D. Bertholf Numerical Solution for Two-Dimensional Elastic Wave Propagation in Finite Bars , 1967 .

[4]  J. T. Howlett,et al.  A modal solution for wave propagation in finite shells of revolution , 1971 .

[5]  Pei Chi Chou,et al.  A Unified Approach to Cylindrical and Spherical Elastic Waves by Method of Characteristics , 1966 .

[6]  K. W. Morton Finite difference and finite element methods , 1976 .

[7]  Über die Differentialgleichung der transversalen Stabschwingungen. Herrn Prof. Dr. L. Prandtl zum 70. Geburtstag , 1947 .

[8]  R. D. Richtmyer,et al.  Survey of the stability of linear finite difference equations , 1956 .

[9]  J. Rose,et al.  Vibration analysis of thick‐walled spheres and cylinders , 1972 .

[10]  J. Habberstad A Two-Dimensional Numerical Solution for Elastic Waves in Variously Configured Rods , 1971 .

[11]  S. Chiu Difference method for multiple reflection of elastic stress waves , 1970 .

[12]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[13]  H. Weinberger,et al.  A first course in partial differential equations , 1965 .

[14]  Z. Alterman,et al.  Propagation of elastic waves in a semi-infinite cylindrical rod using finite difference methods , 1970 .

[15]  Robert Greif,et al.  Numerical Solution of Stress Waves in Layered Media , 1968 .

[16]  Heinrich Weber,et al.  Die partiellen Differentialgleichungen der mathematischen Physik , 1901 .

[17]  C. Fu A Method for the Numerical Integration of the Equations of Motion Arising From a Finite-Element Analysis , 1970 .

[18]  C J Constantino Finite Element Approach to Stress Wave Problems , 1967 .

[19]  J. W. Phillips,et al.  Stress-wave detection of an edge crack in an elastic rod , 1978 .

[20]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[21]  J. H. Cushman Difference schemes or element schemes , 1979 .

[22]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[23]  P. Chou,et al.  Solution of One-Dimensional Elastic Wave Problems by the Method of Characteristics , 1967 .

[24]  R. E. Jones,et al.  ELASTIC WAVE PROPAGATION: A COMPARISON BETWEEN FINITE ELEMENT PREDICTIONS AND EXACT SOLUTIONS. , 1969 .

[25]  R. Courant,et al.  On the solution of nonlinear hyperbolic differential equations by finite differences , 1952 .

[26]  Herbert A. Koenig,et al.  Dynamical finite element analysis for elastic waves in beams and plates , 1968 .

[27]  S. Timoshenko,et al.  X. On the transverse vibrations of bars of uniform cross-section , 1922 .