Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product

SUMMARY The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.

[1]  T. Stauch Ferrochelatase , 2019, Springer Reference Medizin.

[2]  W. Lanzilotta,et al.  Radical new paradigm for heme degradation in Escherichia coli O157:H7 , 2016, Proceedings of the National Academy of Sciences.

[3]  S. Hofbauer,et al.  Hydrogen peroxide‐mediated conversion of coproheme to heme b by HemQ—lessons from the first crystal structure and kinetic studies , 2016, The FEBS journal.

[4]  M. Shepherd,et al.  The HemQ coprohaem decarboxylase generates reactive oxygen species: implications for the evolution of classical haem biosynthesis , 2016, The Biochemical journal.

[5]  M. R. O'Brian,et al.  Metal‐specific control of gene expression mediated by Bradyrhizobium japonicum Mur and Escherichia coli Fur is determined by the cellular context , 2016, Molecular microbiology.

[6]  M. R. O'Brian,et al.  The Bradyrhizobium japonicum Ferrous Iron Transporter FeoAB Is Required for Ferric Iron Utilization in Free Living Aerobic Cells and for Symbiosis* , 2016, The Journal of Biological Chemistry.

[7]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[8]  A. Ducluzeau,et al.  When Did Hemes Enter the Scene of Life? On the Natural History of Heme Cofactors and Heme-Containing Enzymes , 2016 .

[9]  M. R. O'Brian Perception and Homeostatic Control of Iron in the Rhizobia and Related Bacteria. , 2015, Annual review of microbiology.

[10]  Laurent Gouya,et al.  Porphyrias: A 2015 update. , 2015, Clinics and research in hepatology and gastroenterology.

[11]  S. Padmanabhan,et al.  Structural basis for gene regulation by a B12-dependent photoreceptor , 2015, Nature.

[12]  A. Vashisht,et al.  Identification of the Mitochondrial Heme Metabolism Complex , 2015, PloS one.

[13]  L. M. Saraiva,et al.  Staphylococcus aureus haem biosynthesis: characterisation of the enzymes involved in final steps of the pathway , 2015, Molecular microbiology.

[14]  Kristy L. Hentchel,et al.  Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress , 2015, Microbiology and Molecular Reviews.

[15]  U. Völker,et al.  Shotgun proteome analysis of Bordetella pertussis reveals a distinct influence of iron availability on the bacterial metabolism, virulence, and defense response , 2015, Proteomics.

[16]  R. Kant,et al.  Unusual Peroxide-Dependent, Heme-Transforming Reaction Catalyzed by HemQ. , 2015, Biochemistry.

[17]  S. Gerdes,et al.  HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria. , 2015, Archives of biochemistry and biophysics.

[18]  Arianna I. Celis,et al.  Substrate, product, and cofactor: The extraordinarily flexible relationship between the CDE superfamily and heme. , 2015, Archives of biochemistry and biophysics.

[19]  J. Imlay,et al.  The induction of two biosynthetic enzymes helps Escherichia coli sustain heme synthesis and activate catalase during hydrogen peroxide stress , 2015, Molecular microbiology.

[20]  S. Gerdes,et al.  Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin , 2015, Proceedings of the National Academy of Sciences.

[21]  E. J. Loveridge,et al.  CYP105—diverse structures, functions and roles in an intriguing family of enzymes in Streptomyces , 2014, Journal of applied microbiology.

[22]  D. Heinz,et al.  The crystal structure of siroheme decarboxylase in complex with iron-uroporphyrin III reveals two essential histidine residues. , 2014, Journal of molecular biology.

[23]  G. Layer,et al.  NirN Protein from Pseudomonas aeruginosa is a Novel Electron-bifurcating Dehydrogenase Catalyzing the Last Step of Heme d1 Biosynthesis* , 2014, The Journal of Biological Chemistry.

[24]  Koichi Kobayashi,et al.  Molecular Phylogeny and Intricate Evolutionary History of the Three Isofunctional Enzymes Involved in the Oxidation of Protoporphyrinogen IX , 2014, Genome biology and evolution.

[25]  R. Pickersgill,et al.  The structure, function and properties of sirohaem decarboxylase - an enzyme with structural homology to a transcription factor family that is part of the alternative haem biosynthesis pathway , 2014, Molecular microbiology.

[26]  B. Voß,et al.  Comparative Analysis of the Primary Transcriptome of Synechocystis sp. PCC 6803 , 2014, DNA research : an international journal for rapid publication of reports on genes and genomes.

[27]  G. C. Ferreira,et al.  Unstable Reaction Intermediates and Hysteresis during the Catalytic Cycle of 5-Aminolevulinate Synthase , 2014, The Journal of Biological Chemistry.

[28]  M. R. O'Brian,et al.  Differential control of Bradyrhizobium japonicum iron stimulon genes through variable affinity of the iron response regulator (Irr) for target gene promoters and selective loss of activator function , 2014, Molecular microbiology.

[29]  M. R. O'Brian,et al.  A Bacterial Iron Exporter for Maintenance of Iron Homeostasis* , 2014, The Journal of Biological Chemistry.

[30]  W. Gong,et al.  Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with its stimulator protein , 2014, Proceedings of the National Academy of Sciences.

[31]  Pietro Roversi,et al.  Identification and characterization of the ‘missing’ terminal enzyme for siroheme biosynthesis in α-proteobacteria , 2014, Molecular microbiology.

[32]  Harini Srinivasan,et al.  Structural Insights into E. coli Porphobilinogen Deaminase during Synthesis and Exit of 1-Hydroxymethylbilane , 2014, PLoS Comput. Biol..

[33]  J. Cooper,et al.  Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium enzyme at near-atomic resolution , 2014, Acta crystallographica. Section D, Biological crystallography.

[34]  Alexander Neumann,et al.  The Alternative Route to Heme in the Methanogenic Archaeon Methanosarcina barkeri , 2014, Archaea.

[35]  S. Ragsdale Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane. , 2014, Metal ions in life sciences.

[36]  M. Marletta,et al.  Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior. , 2013, Trends in biochemical sciences.

[37]  L. Runyen-Janecky Role and regulation of heme iron acquisition in gram-negative pathogens , 2013, Front. Cell. Infect. Microbiol..

[38]  Sebastian A. Wagner,et al.  Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. , 2013, Cell reports.

[39]  M. Howard,et al.  Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12) , 2013, Proceedings of the National Academy of Sciences.

[40]  A. Mozzarelli,et al.  Asymmetry of the Active Site Loop Conformation between Subunits of Glutamate-1-semialdehyde Aminomutase in Solution , 2013, BioMed research international.

[41]  Dean P. Jones,et al.  The Redox Proteome* , 2013, The Journal of Biological Chemistry.

[42]  J. Tachezy,et al.  Iron-Induced Changes in the Proteome of Trichomonas vaginalis Hydrogenosomes , 2013, PloS one.

[43]  K. Riedel,et al.  Maturation of the cytochrome cd1 nitrite reductase NirS from Pseudomonas aeruginosa requires transient interactions between the three proteins NirS, NirN and NirF , 2013, Bioscience reports.

[44]  G. C. Ferreira,et al.  Aminolaevulinic acid synthase of Rhodobacter capsulatus: high-resolution kinetic investigation of the structural basis for substrate binding and catalysis. , 2013, The Biochemical journal.

[45]  Yin Tan,et al.  Quantitative Structural Insight into Human Variegate Porphyria Disease* , 2013, The Journal of Biological Chemistry.

[46]  J. Cooper,et al.  Insights into the mechanism of pyrrole polymerization catalysed by porphobilinogen deaminase: high-resolution X-ray studies of the Arabidopsis thaliana enzyme. , 2013, Acta crystallographica. Section D, Biological crystallography.

[47]  Alberto Napuli,et al.  Combining Functional and Structural Genomics to Sample the Essential Burkholderia Structome , 2013, PloS one.

[48]  L. Hederstedt,et al.  Heme proteins in lactic acid bacteria. , 2013, Advances in microbial physiology.

[49]  Jun-tao Guo,et al.  Porphyrin and heme metabolism and the porphyrias. , 2013, Comprehensive Physiology.

[50]  I. Hamza,et al.  One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. , 2012, Biochimica et biophysica acta.

[51]  R. Roop,et al.  The bhuQ Gene Encodes a Heme Oxygenase That Contributes to the Ability of Brucella abortus 2308 To Use Heme as an Iron Source and Is Regulated by Irr , 2012, Journal of bacteriology.

[52]  L. Hederstedt,et al.  Genes Important for Catalase Activity in Enterococcus faecalis , 2012, PloS one.

[53]  M. R. O'Brian,et al.  Manganese is required for oxidative metabolism in unstressed Bradyrhizobium japonicum cells , 2012, Molecular microbiology.

[54]  J. Helmann,et al.  Derepression of the Bacillus subtilis PerR Peroxide Stress Response Leads to Iron Deficiency , 2011, Journal of bacteriology.

[55]  R. Roop,et al.  Mur Regulates the Gene Encoding the Manganese Transporter MntH in Brucella abortus 2308 , 2011, Journal of bacteriology.

[56]  J. Stetefeld,et al.  Kinemage of action - proposed reaction mechanism of glutamate-1-semialdehyde aminomutase at an atomic level. , 2011, Biochemical and biophysical research communications.

[57]  M. Howard,et al.  Molecular hijacking of siroheme for the synthesis of heme and d1 heme , 2011, Proceedings of the National Academy of Sciences.

[58]  Eric P Skaar,et al.  Molecular mechanisms of Staphylococcus aureus iron acquisition. , 2011, Annual review of microbiology.

[59]  G. Stacey,et al.  Bacterial outer membrane channel for divalent metal ion acquisition , 2011, Proceedings of the National Academy of Sciences.

[60]  R. Roop,et al.  The Iron-Responsive Regulator Irr Is Required for Wild-Type Expression of the Gene Encoding the Heme Transporter BhuA in Brucella abortus 2308 , 2011, Journal of bacteriology.

[61]  Li Zhang Heme Biology: The Secret Life of Heme in Regulating Diverse Biological Processes , 2011 .

[62]  M. R. O'Brian,et al.  The Bradyrhizobium japonicum frcB Gene Encodes a Diheme Ferric Reductase , 2011, Journal of bacteriology.

[63]  S. Gerdes,et al.  Discovery of a Gene Involved in a Third Bacterial Protoporphyrinogen Oxidase Activity through Comparative Genomic Analysis and Functional Complementation , 2011, Applied and Environmental Microbiology.

[64]  Mei Li,et al.  Crystal structure of uroporphyrinogen III synthase from Pseudomonas syringae pv. tomato DC3000. , 2011, Biochemical and biophysical research communications.

[65]  J. DuBois,et al.  Recent advances in bacterial heme protein biochemistry. , 2011, Current opinion in chemical biology.

[66]  M. Brunori,et al.  Observation of fast release of NO from ferrous d₁ haem allows formulation of a unified reaction mechanism for cytochrome cd₁ nitrite reductases. , 2011, The Biochemical journal.

[67]  M. Bott,et al.  Control of Heme Homeostasis in Corynebacterium glutamicum by the Two-Component System HrrSA , 2011, Journal of bacteriology.

[68]  R. Pickersgill,et al.  Evolution in a family of chelatases facilitated by the introduction of active site asymmetry and protein oligomerization , 2010, Proceedings of the National Academy of Sciences.

[69]  D. Jahn,et al.  A Novel Pathway for the Biosynthesis of Heme in Archaea: Genome-Based Bioinformatic Predictions and Experimental Evidence , 2010, Archaea.

[70]  S. Ferguson,et al.  NirF is a periplasmic protein that binds d1 heme as part of its essential role in d1 heme biogenesis , 2010, The FEBS journal.

[71]  M. Teng,et al.  Crystal structure of glutamate-1-semialdehyde aminotransferase from Bacillus subtilis with bound pyridoxamine-5'-phosphate. , 2010, Biochemical and biophysical research communications.

[72]  R. Tanaka,et al.  Identification of a gene essential for protoporphyrinogen IX oxidase activity in the cyanobacterium Synechocystis sp. PCC6803 , 2010, Proceedings of the National Academy of Sciences.

[73]  B. Paw,et al.  Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis. , 2010, Blood.

[74]  S. Gerdes,et al.  Discovery and Characterization of HemQ , 2010, The Journal of Biological Chemistry.

[75]  S. Ferguson,et al.  NirJ, a radical SAM family member of the d 1 heme biogenesis cluster , 2010, FEBS letters.

[76]  T. Elliott,et al.  A purified mutant HemA protein from Salmonella enterica serovar Typhimurium lacks bound heme and is defective for heme-mediated regulation in vivo. , 2010, FEMS microbiology letters.

[77]  Dieter Jahn,et al.  Structure and function of enzymes in heme biosynthesis , 2010, Protein science : a publication of the Protein Society.

[78]  A. Magalon,et al.  Heme biosynthesis is coupled to electron transport chains for energy generation , 2010, Proceedings of the National Academy of Sciences.

[79]  Yin Tan,et al.  Structural insight into unique properties of protoporphyrinogen oxidase from Bacillus subtilis. , 2010, Journal of structural biology.

[80]  C. Singleton,et al.  Heme-responsive DNA Binding by the Global Iron Regulator Irr from Rhizobium leguminosarum* , 2010, The Journal of Biological Chemistry.

[81]  H. Schiebel,et al.  The oxygen-independent coproporphyrinogen III oxidase HemN utilizes harderoporphyrinogen as a reaction intermediate during conversion of coproporphyrinogen III to protoporphyrinogen IX , 2010, Biological chemistry.

[82]  C. Bauer,et al.  The tetrapyrrole biosynthetic pathway and its regulation in Rhodobacter capsulatus. , 2010, Advances in experimental medicine and biology.

[83]  S. Ferguson,et al.  d1 haem biogenesis – assessing the roles of three nir gene products , 2009, The FEBS journal.

[84]  W. Lanzilotta,et al.  Product release rather than chelation determines metal specificity for ferrochelatase. , 2009, Journal of molecular biology.

[85]  H. Schiebel,et al.  The Pseudomonas aeruginosa nirE gene encodes the S‐adenosyl‐L‐methionine‐dependent uroporphyrinogen III methyltransferase required for heme d1 biosynthesis , 2009, The FEBS journal.

[86]  H. Dailey,et al.  Identification of Escherichia coli HemG as a novel, menadione-dependent flavodoxin with protoporphyrinogen oxidase activity. , 2009, Biochemistry.

[87]  X. Schneider-Yin,et al.  Variations in the length of poly-C and poly-T tracts in intron 3 of the human ferrochelatase gene. , 2009, Cellular and molecular biology.

[88]  C. Hill,et al.  Substrate shuttling between active sites of uroporphyrinogen decarboxylase is not required to generate coproporphyrinogen. , 2009, Journal of molecular biology.

[89]  L. M. Saraiva,et al.  Functional characterization of the early steps of tetrapyrrole biosynthesis and modification in Desulfovibrio vulgaris Hildenborough. , 2009, The Biochemical journal.

[90]  R. Roop,et al.  The Manganese Transporter MntH Is a Critical Virulence Determinant for Brucella abortus 2308 in Experimentally Infected Mice , 2009, Infection and Immunity.

[91]  J. Lindsey,et al.  Simple Formation of an Abiotic Porphyrinogen in Aqueous Solution , 2009, Origins of Life and Evolution of Biospheres.

[92]  J. Cooper,et al.  Structure of human porphobilinogen deaminase at 2.8 A: the molecular basis of acute intermittent porphyria. , 2009, The Biochemical journal.

[93]  Michael Y. Galperin,et al.  Globins synthesize the second messenger bis-(3'-5')-cyclic diguanosine monophosphate in bacteria. , 2009, Journal of molecular biology.

[94]  M. R. O'Brian,et al.  The mntH gene encodes the major Mn2+ transporter in Bradyrhizobium japonicum and is regulated by manganese via the Fur protein , 2009, Molecular microbiology.

[95]  G. C. Ferreira,et al.  5-aminolevulinate synthase: catalysis of the first step of heme biosynthesis. , 2009, Cellular and molecular biology.

[96]  A. Joachimiak,et al.  Structural insight into acute intermittent porphyria , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[97]  Nicole R. Buan,et al.  Conversion of Cobinamide into Coenzyme B12 , 2009 .

[98]  M. Warren,et al.  Biosynthesis of Siroheme and Coenzyme F430 , 2009 .

[99]  Alison G. Smith,et al.  TETRAPYRROLES: BIRTH, LIFE AND DEATH , 2009 .

[100]  C. Hunter,et al.  Biosynthesis of Chlorophyll and Barteriochlorophyll , 2009 .

[101]  D. Jahn,et al.  Biosynthesis of 5-Aminolevulinic Acid , 2009 .

[102]  M. J. Terry,et al.  Synthesis and Role of Bilins in Photosynthetic Organisms , 2009 .

[103]  Ilka U. Heinemann,et al.  Complex formation between protoporphyrinogen IX oxidase and ferrochelatase during haem biosynthesis in Thermosynechococcus elongatus. , 2008, Microbiology.

[104]  C. A. Lewis,et al.  Uroporphyrinogen decarboxylation as a benchmark for the catalytic proficiency of enzymes , 2008, Proceedings of the National Academy of Sciences.

[105]  Xiusheng Chu,et al.  Functional studies of rat hydroxymethylbilane synthase. , 2008, Bioorganic chemistry.

[106]  A. Rosato,et al.  Genome-based analysis of heme biosynthesis and uptake in prokaryotic systems. , 2008, Journal of proteome research.

[107]  C. Hill,et al.  Structure and mechanistic implications of a uroporphyrinogen III synthase-product complex. , 2008, Biochemistry.

[108]  Ilka U. Heinemann,et al.  The biochemistry of heme biosynthesis. , 2008, Archives of biochemistry and biophysics.

[109]  J. Imlay Cellular defenses against superoxide and hydrogen peroxide. , 2008, Annual review of biochemistry.

[110]  S. Al-Karadaghi,et al.  Porphyrin binding and distortion and substrate specificity in the ferrochelatase reaction: the role of active site residues. , 2008, Journal of molecular biology.

[111]  Ilka U. Heinemann,et al.  Identification and characterization of the Arabidopsis gene encoding the tetrapyrrole biosynthesis enzyme uroporphyrinogen III synthase. , 2008, The Biochemical journal.

[112]  M. Ramos,et al.  Comparative density functional study of models for the reaction mechanism of uroporphyrinogen III synthase. , 2008, The journal of physical chemistry. B.

[113]  T. Selwood,et al.  Kinetics and thermodynamics of the interchange of the morpheein forms of human porphobilinogen synthase. , 2008, Biochemistry.

[114]  C. Hunter,et al.  The C-Terminal Extension of Ferrochelatase Is Critical for Enzyme Activity and for Functioning of the Tetrapyrrole Pathway in Synechocystis Strain PCC 6803 , 2008, Journal of bacteriology.

[115]  A. Serrano,et al.  Flavodoxin-mediated electron transfer from photosystem I to ferredoxin-NADP+ reductase in Anabaena: role of flavodoxin hydrophobic residues in protein-protein interactions. , 2008, Biochemistry.

[116]  W. Lanzilotta,et al.  A pi-helix switch selective for porphyrin deprotonation and product release in human ferrochelatase. , 2007, Journal of molecular biology.

[117]  Markus T. Friberg,et al.  New Target Genes Controlled by the Bradyrhizobium japonicum Two-Component Regulatory System RegSR , 2007, Journal of bacteriology.

[118]  D. Jahn,et al.  Glutamate recognition and hydride transfer by Escherichia coli glutamyl‐tRNA reductase , 2007, The FEBS journal.

[119]  J. D. Reid,et al.  Direct measurement of metal ion chelation in the active site of human ferrochelatase. , 2007, Biochemistry.

[120]  A. Steyn,et al.  Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor , 2007, Proceedings of the National Academy of Sciences.

[121]  R. Raghavan,et al.  Transcriptional Regulation of the Heme Binding Protein Gene Family of Bartonella quintana Is Accomplished by a Novel Promoter Element and Iron Response Regulator , 2007, Infection and Immunity.

[122]  J. Rose,et al.  Altered orientation of active site residues in variants of human ferrochelatase. Evidence for a hydrogen bond network involved in catalysis. , 2007, Biochemistry.

[123]  Jelena S. Bezbradica,et al.  A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. , 2007, Cell host & microbe.

[124]  Dieter Jahn,et al.  Functional definition of the tobacco protoporphyrinogen IX oxidase substrate-binding site. , 2007, The Biochemical journal.

[125]  M. Schmitt,et al.  The ChrA-ChrS and HrrA-HrrS Signal Transduction Systems Are Required for Activation of the hmuO Promoter and Repression of the hemA Promoter in Corynebacterium diphtheriae , 2007, Infection and Immunity.

[126]  Marjorie A. Jones,et al.  Role of aspartate 400, arginine 262, and arginine 401 in the catalytic mechanism of human coproporphyrinogen oxidase , 2007, Protein science : a publication of the Protein Society.

[127]  G. Levicán,et al.  Regulation of a glutamyl-tRNA synthetase by the heme status , 2007, Proceedings of the National Academy of Sciences.

[128]  W. Lanzilotta,et al.  Substrate interactions with human ferrochelatase , 2007, Proceedings of the National Academy of Sciences.

[129]  E. Jaffe,et al.  ALAD porphyria is a conformational disease. , 2007, American journal of human genetics.

[130]  Soojin Jang,et al.  Micromolar Intracellular Hydrogen Peroxide Disrupts Metabolism by Damaging Iron-Sulfur Enzymes* , 2007, Journal of Biological Chemistry.

[131]  S. Al-Karadaghi,et al.  Amino acid residues His183 and Glu264 in Bacillus subtilis ferrochelatase direct and facilitate the insertion of metal ion into protoporphyrin IX. , 2007, Biochemistry.

[132]  Qun Liu,et al.  Crystal Structure of Uroporphyrinogen Decarboxylase from Bacillus subtilis , 2006, Journal of bacteriology.

[133]  C. Gopi Mohan,et al.  Crystal Structure of Protoporphyrinogen Oxidase from Myxococcus xanthus and Its Complex with the Inhibitor Acifluorfen* , 2006, Journal of Biological Chemistry.

[134]  J. Vohradský,et al.  The iron‐regulated transcriptome and proteome of Neisseria meningitidis serogroup C , 2006, Proteomics.

[135]  Mikhail S. Gelfand,et al.  Computational Reconstruction of Iron- and Manganese-Responsive Transcriptional Networks in α-Proteobacteria , 2006, PLoS Comput. Biol..

[136]  Ilka U. Heinemann,et al.  Heme Biosynthesis in Methanosarcina barkeri via a Pathway Involving Two Methylation Reactions , 2006, Journal of bacteriology.

[137]  R. Ugalde,et al.  Irr regulates brucebactin and 2,3-dihydroxybenzoic acid biosynthesis, and is implicated in the oxidative stress resistance and intracellular survival of Brucella abortus. , 2006, Microbiology.

[138]  Li Zhang,et al.  Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases , 2006, Cell Research.

[139]  M. James,et al.  Crystal Structure of the Vitamin B12 Biosynthetic Cobaltochelatase, CbiXS, from Archaeoglobus Fulgidus , 2006, Journal of Structural and Functional Genomics.

[140]  M. Shepherd,et al.  A new class of [2Fe-2S]-cluster-containing protoporphyrin (IX) ferrochelatases. , 2006, The Biochemical journal.

[141]  D. Jahn,et al.  The Substrate Radical of Escherichia coli Oxygen-independent Coproporphyrinogen III Oxidase HemN* , 2006, Journal of Biological Chemistry.

[142]  D. Jahn,et al.  Evolutionary relationship between initial enzymes of tetrapyrrole biosynthesis. , 2006, Journal of molecular biology.

[143]  T. Donohue,et al.  In Vitro and In Vivo Analysis of the Role of PrrA in Rhodobacter sphaeroides 2.4.1 hemA Gene Expression , 2006, Journal of bacteriology.

[144]  H. Panek,et al.  Oxidative stress promotes degradation of the Irr protein to regulate haem biosynthesis in Bradyrhizobium japonicum , 2006, Molecular microbiology.

[145]  R. Fairman,et al.  Single Amino Acid Mutations Alter the Distribution of Human Porphobilinogen Synthase Quaternary Structure Isoforms (Morpheeins)* , 2006, Journal of Biological Chemistry.

[146]  B. Snel,et al.  Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.

[147]  S. Al-Karadaghi,et al.  Chelatases: distort to select? , 2006, TIBS -Trends in Biochemical Sciences. Regular ed.

[148]  Markus Friberg,et al.  The Iron Control Element, Acting in Positive and Negative Control of Iron-Regulated Bradyrhizobium japonicum Genes, Is a Target for the Irr Protein , 2006, Journal of bacteriology.

[149]  C. Bauer,et al.  Tetrapyrrole Biosynthesis in Rhodobacter capsulatus Is Transcriptionally Regulated by the Heme-Binding Regulatory Protein, HbrL , 2006, Journal of bacteriology.

[150]  J. Cooper,et al.  Structure of Chlorobium vibrioforme 5-aminolaevulinic acid dehydratase complexed with a diacid inhibitor. , 2005, Acta crystallographica. Section D, Biological crystallography.

[151]  Richard A. Moore,et al.  Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarrays. , 2005, FEMS microbiology letters.

[152]  M. Schmitt,et al.  Analysis of a Heme-Dependent Signal Transduction System in Corynebacterium diphtheriae: Deletion of the chrAS Genes Results in Heme Sensitivity and Diminished Heme-Dependent Activation of the hmuO Promoter , 2005, Infection and Immunity.

[153]  T. Lash The enigma of coproporphyrinogen oxidase: how does this unusual enzyme carry out oxidative decarboxylations to afford vinyl groups? , 2005, Bioorganic & medicinal chemistry letters.

[154]  S. Al-Karadaghi,et al.  Metallation of the transition-state inhibitor N-methyl mesoporphyrin by ferrochelatase: implications for the catalytic reaction mechanism. , 2005, Journal of molecular biology.

[155]  P. Martásek,et al.  Structural basis of hereditary coproporphyria. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[156]  R. Ugalde,et al.  Dimeric Brucella abortus Irr protein controls its own expression and binds haem. , 2005, Microbiology.

[157]  Dieter Jahn,et al.  Crystal structure of 5‐aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans , 2005, The EMBO journal.

[158]  E. Jaffe Morpheeins--a new structural paradigm for allosteric regulation. , 2005, Trends in biochemical sciences.

[159]  M. Ruegg,et al.  Structural and functional diversity generated by alternative mRNA splicing. , 2005, Trends in biochemical sciences.

[160]  Dieter Jahn,et al.  Radical S-Adenosylmethionine Enzyme Coproporphyrinogen III Oxidase HemN , 2005, Journal of Biological Chemistry.

[161]  Joshua Orvis,et al.  Identification of the Iron-Responsive Genes of Neisseria gonorrhoeae by Microarray Analysis in Defined Medium , 2005, Journal of bacteriology.

[162]  S. Beale,et al.  Physical and Kinetic Interactions between Glutamyl-tRNA Reductase and Glutamate-1-semialdehyde Aminotransferase of Chlamydomonas reinhardtii* , 2005, Journal of Biological Chemistry.

[163]  S. Beale,et al.  Glutamyl-tRNA Reductase of Chlorobium vibrioforme Is a Dissociable Homodimer That Contains One Tightly Bound Heme per Subunit , 2005, Journal of bacteriology.

[164]  Dieter Jahn,et al.  Complex Formation between Glutamyl-tRNA Reductase and Glutamate-1-semialdehyde 2,1-Aminomutase in Escherichia coli during the Initial Reactions of Porphyrin Biosynthesis* , 2005, Journal of Biological Chemistry.

[165]  J. Helmann,et al.  Metal ion homeostasis in Bacillus subtilis. , 2005, Current opinion in microbiology.

[166]  Mark Gomelsky,et al.  Transcriptome Analysis of the Rhodobacter sphaeroides PpsR Regulon: PpsR as a Master Regulator of Photosystem Development , 2005, Journal of bacteriology.

[167]  Koichiro Ishimori,et al.  Two Heme Binding Sites Are Involved in the Regulated Degradation of the Bacterial Iron Response Regulator (Irr) Protein* , 2005, Journal of Biological Chemistry.

[168]  D. Jahn,et al.  Tracking the evolution of porphobilinogen synthase metal dependence in vitro. , 2005, Journal of molecular biology.

[169]  H. Muir The Biogenesis of Porphyrins THE THE RING , 2005 .

[170]  R. Kerby,et al.  CooA, a paradigm for gas sensing regulatory proteins. , 2005, Journal of inorganic biochemistry.

[171]  M. Gilles-Gonzalez,et al.  Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses. , 2005, Journal of inorganic biochemistry.

[172]  R. Fairman,et al.  Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer , 2004, BMC Biochemistry.

[173]  E. Getzoff,et al.  Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis. , 2004, Journal of molecular biology.

[174]  G. Storz,et al.  Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path , 2004, Nature Structural &Molecular Biology.

[175]  Jonathan W Willett,et al.  Regulation of hem gene expression in Rhodobacter capsulatus by redox and photosystem regulators RegA, CrtJ, FnrL, and AerR. , 2004, Journal of molecular biology.

[176]  P. Labbé,et al.  Crystal Structure of the Oxygen-dependant Coproporphyrinogen Oxidase (Hem13p) of Saccharomyces cerevisiae* , 2004, Journal of Biological Chemistry.

[177]  D. Söll,et al.  tRNA Recognition by Glutamyl-tRNA Reductase* , 2004, Journal of Biological Chemistry.

[178]  P. Labbé,et al.  Crystal structure of the oxygen-dependent coproporphyrinogen oxidase (Hem13p) of Saccharomyces cerevisiae , 2004 .

[179]  John D. Coates,et al.  Microbial perchlorate reduction: rocket-fuelled metabolism , 2004, Nature Reviews Microbiology.

[180]  M. R. O'Brian,et al.  Fur Is Involved in Manganese-Dependent Regulation of mntA (sitA) Expression in Sinorhizobium meliloti , 2004, Applied and Environmental Microbiology.

[181]  A. Pühler,et al.  The Sinorhizobium meliloti fur Gene Regulates, with Dependence on Mn(II), Transcription of the sitABCD Operon, Encoding a Metal-Type Transporter , 2004, Journal of bacteriology.

[182]  G. Sawers,et al.  The Fur-like protein Mur of Rhizobium leguminosarum is a Mn(2+)-responsive transcriptional regulator. , 2004, Microbiology.

[183]  Robert Huber,et al.  Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis , 2004, The EMBO journal.

[184]  C. Mohr,et al.  The Pseudomonas aeruginosa homologs of hemC and hemD are linked to the gene encoding the regulator of mucoidy AlgR , 2004, Molecular and General Genetics MGG.

[185]  C. Hill,et al.  Structural basis for tetrapyrrole coordination by uroporphyrinogen decarboxylase , 2003, The EMBO journal.

[186]  D. Jahn,et al.  Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes , 2003, The EMBO journal.

[187]  Ruma Banerjee,et al.  The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. , 2003, Annual review of biochemistry.

[188]  D. Jahn,et al.  Oxygen-dependent Coproporphyrinogen III Oxidase (HemF) from Escherichia coli Is Stimulated by Manganese* , 2003, Journal of Biological Chemistry.

[189]  E. Getzoff,et al.  CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis , 2003, Nature Structural Biology.

[190]  D. Jahn,et al.  Bacterial heme biosynthesis and its biotechnological application , 2003, Applied Microbiology and Biotechnology.

[191]  Chris E Cooper,et al.  Global Iron-dependent Gene Regulation in Escherichia coli , 2003, Journal of Biological Chemistry.

[192]  Alexander Wlodawer,et al.  Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase , 2003, Nature Structural Biology.

[193]  L. Sherman,et al.  Microarray Analysis of the Genome-Wide Response to Iron Deficiency and Iron Reconstitution in the Cyanobacterium Synechocystis sp. PCC 68031[w] , 2003, Plant Physiology.

[194]  H. Schubert,et al.  A Story of Chelatase Evolution , 2003, Journal of Biological Chemistry.

[195]  J. Imlay,et al.  High Levels of Intracellular Cysteine Promote Oxidative DNA Damage by Driving the Fenton Reaction , 2003, Journal of bacteriology.

[196]  D. Jahn,et al.  Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. , 2003, The Biochemical journal.

[197]  U. Ryde,et al.  Metal binding to Bacillus subtilis ferrochelatase and interaction between metal sites , 2003, JBIC Journal of Biological Inorganic Chemistry.

[198]  H. Inokuchi,et al.  Escherichia coli Glutamyl-tRNA Reductase , 2002, The Journal of Biological Chemistry.

[199]  D. Jahn,et al.  Oxygen-independent Coproporphyrinogen-III Oxidase HemN from Escherichia coli * , 2002, The Journal of Biological Chemistry.

[200]  C. Roessner,et al.  Mutagenesis identifies a conserved tyrosine residue important for the activity of uroporphyrinogen III synthase from Anacystis nidulans , 2002, FEBS letters.

[201]  H. Panek,et al.  A whole genome view of prokaryotic haem biosynthesis. , 2002, Microbiology.

[202]  S. Al-Karadaghi,et al.  In Vivo and In Vitro Studies of Bacillus subtilis Ferrochelatase Mutants Suggest Substrate Channeling in the Heme Biosynthesis Pathway , 2002, Journal of bacteriology.

[203]  J. Helmann,et al.  Regulation of inducible peroxide stress responses , 2002, Molecular microbiology.

[204]  H. Dailey,et al.  Identification of [2Fe-2S] Clusters in Microbial Ferrochelatases , 2002, Journal of bacteriology.

[205]  M. R. O'Brian,et al.  Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. , 2002, Molecular cell.

[206]  M. R. O'Brian,et al.  Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. , 2002, Advances in microbial physiology.

[207]  J. Imlay,et al.  Hydrogen Peroxide Fluxes and Compartmentalization inside Growing Escherichia coli , 2001, Journal of bacteriology.

[208]  D. Jahn,et al.  V‐shaped structure of glutamyl‐tRNA reductase, the first enzyme of tRNA‐dependent tetrapyrrole biosynthesis , 2001, The EMBO journal.

[209]  R. Huber,et al.  Crystal Structure and Substrate Binding Modeling of the Uroporphyrinogen-III Decarboxylase from Nicotiana tabacum , 2001, The Journal of Biological Chemistry.

[210]  C. Hill,et al.  Crystal structure of human uroporphyrinogen III synthase , 2001, The EMBO journal.

[211]  H. Dailey,et al.  Expression and characterization of the terminal heme synthetic enzymes from the hyperthermophile Aquifex aeolicus. , 2001, FEMS microbiology letters.

[212]  J. Helmann,et al.  Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA , 2001, Molecular microbiology.

[213]  H. Hennecke,et al.  Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum , 2001, Molecular microbiology.

[214]  J B Stevens,et al.  The Rhizobium leguminosarum tonB gene is required for the uptake of siderophore and haem as sources of iron , 2001, Molecular microbiology.

[215]  Robert A. LaRossa,et al.  DNA Microarray-Mediated Transcriptional Profiling of the Escherichia coli Response to Hydrogen Peroxide , 2001, Journal of bacteriology.

[216]  J. Zeilstra-Ryalls,et al.  Control of hemA Expression inRhodobacter sphaeroides 2.4.1: Effect of a Transposon Insertion in the hbdA Gene , 2001, Journal of bacteriology.

[217]  L. Velasco,et al.  One of Two hemN Genes inBradyrhizobium japonicum Is Functional during Anaerobic Growth and in Symbiosis , 2001, Journal of bacteriology.

[218]  J. Rose,et al.  Ferrochelatase at the millennium: structures, mechanisms and [2Fe-2S] clusters , 2000, Cellular and Molecular Life Sciences CMLS.

[219]  R. Gupta,et al.  The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. , 2000, FEMS microbiology reviews.

[220]  S. Al-Karadaghi,et al.  Structural and mechanistic basis of porphyrin metallation by ferrochelatase. , 2000, Journal of molecular biology.

[221]  E. Jaffe The porphobilinogen synthase family of metalloenzymes. , 2000, Acta crystallographica. Section D, Biological crystallography.

[222]  V. Fülöp,et al.  Cytochrome cd1 nitrite reductase structure raises interesting mechanistic questions. , 2000, Sub-cellular biochemistry.

[223]  J. Cooper,et al.  The schiff base complex of yeast 5‐aminolaevulinic acid dehydratase with laevulinic acid , 2000, Protein science : a publication of the Protein Society.

[224]  D. Hoover,et al.  Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials. , 1999, Journal of molecular biology.

[225]  D. Jahn,et al.  Methanopyrus kandleri Glutamyl-tRNA Reductase* , 1999, The Journal of Biological Chemistry.

[226]  M. Schmitt Identification of a Two-Component Signal Transduction System fromCorynebacterium diphtheriae That Activates Gene Expression in Response to the Presence of Heme and Hemoglobin , 1999, Journal of bacteriology.

[227]  K S Wilson,et al.  Common chelatase design in the branched tetrapyrrole pathways of heme and anaerobic cobalamin synthesis. , 1999, Biochemistry.

[228]  S. Kaplan,et al.  A Novel Mechanism for the Regulation of Photosynthesis Gene Expression by the TspO Outer Membrane Protein of Rhodobacter sphaeroides 2.4.1* , 1999, The Journal of Biological Chemistry.

[229]  D W Heinz,et al.  High resolution crystal structure of a Mg2+-dependent porphobilinogen synthase. , 1999, Journal of molecular biology.

[230]  G. C. Ferreira,et al.  Pre-steady-state Reaction of 5-Aminolevulinate Synthase , 1999, The Journal of Biological Chemistry.

[231]  J. Cooper,et al.  X-ray structure of 5-aminolevulinic acid dehydratase from Escherichia coli complexed with the inhibitor levulinic acid at 2.0 A resolution. , 1999, Biochemistry.

[232]  T. Elliott,et al.  Conditional Stability of the HemA Protein (Glutamyl-tRNA Reductase) Regulates Heme Biosynthesis inSalmonella typhimurium , 1999, Journal of bacteriology.

[233]  A. Corrigall,et al.  Purification of and Kinetic Studies on a Cloned Protoporphyrinogen Oxidase from the Aerobic BacteriumBacillus subtilis , 1998 .

[234]  I. Kullik,et al.  Bradyrhizobium japonicumFixK2, a Crucial Distributor in the FixLJ-Dependent Regulatory Cascade for Control of Genes Inducible by Low Oxygen Levels , 1998, Journal of bacteriology.

[235]  R. Hassett,et al.  The Bacterial Irr Protein Is Required for Coordination of Heme Biosynthesis with Iron Availability* , 1998, The Journal of Biological Chemistry.

[236]  Y. Igarashi,et al.  Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr , 1998, Molecular microbiology.

[237]  H. Dailey,et al.  Identification of an FAD Superfamily Containing Protoporphyrinogen Oxidases, Monoamine Oxidases, and Phytoene Desaturase , 1998, The Journal of Biological Chemistry.

[238]  S. Mongkolsuk,et al.  Identification and Characterization of a New Organic Hydroperoxide Resistance (ohr) Gene with a Novel Pattern of Oxidative Stress Regulation from Xanthomonas campestrispv. phaseoli , 1998, Journal of bacteriology.

[239]  C. Hill,et al.  Crystal structure of human uroporphyrinogen decarboxylase , 1998, The EMBO journal.

[240]  T. Inubushi,et al.  A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[241]  S. Kaplan,et al.  Role of the fnrL Gene in Photosystem Gene Expression and Photosynthetic Growth of Rhodobacter sphaeroides 2.4.1 , 1998, Journal of bacteriology.

[242]  P. J. King,et al.  Transient-state kinetic analysis of Synechococcus glutamate 1-semialdehyde aminotransferase. , 1998, Biochemistry.

[243]  A. Corrigall,et al.  Purification of and kinetic studies on a cloned protoporphyrinogen oxidase from the aerobic bacterium Bacillus subtilis. , 1998, Archives of biochemistry and biophysics.

[244]  S. Nikonov,et al.  Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis. , 1997, Structure.

[245]  R. Petrovich,et al.  Magnetic resonance studies on the active site and metal centers of Bradyrhizobium japonicum porphobilinogen synthase. , 1997, Biochemistry.

[246]  M. Warren,et al.  Reconstitution of the holoenzyme form of Escherichia coli porphobilinogen deaminase from apoenzyme with porphobilinogen and preuroporphyrinogen: a study using circular dichroism spectroscopy. , 1997, Biochemistry.

[247]  M. R. O'Brian,et al.  Transcriptional regulation of delta-aminolevulinic acid dehydratase synthesis by oxygen in Bradyrhizobium japonicum and evidence for developmental control of the hemB gene , 1997, Journal of bacteriology.

[248]  C. Hill,et al.  Characterization and crystallization of human uroporphyrinogen decarboxylase , 1997, Protein science : a publication of the Protein Society.

[249]  M. Hennig,et al.  Crystal structure of glutamate-1-semialdehyde aminomutase: an alpha2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[250]  T. Elliott,et al.  Regulation of heme biosynthesis in Salmonella typhimurium: activity of glutamyl-tRNA reductase (HemA) is greatly elevated during heme limitation by a mechanism which increases abundance of the protein , 1997, Journal of bacteriology.

[251]  Y. Igarashi,et al.  Gene cluster for dissimilatory nitrite reductase (nir) from Pseudomonas aeruginosa: sequencing and identification of a locus for heme d1 biosynthesis , 1997, Journal of bacteriology.

[252]  P. Labbé Purification and properties of coproporphyrinogen III oxidase from yeast. , 1997, Methods in enzymology.

[253]  W. Chen,et al.  Expression of glutamyl-tRNA reductase in Escherichia coli. , 1996, Biochimica et biophysica acta.

[254]  M. Warren,et al.  Discovery that the assembly of the dipyrromethane cofactor of porphobilinogen deaminase holoenzyme proceeds initially by the reaction of preuroporphyrinogen with the apoenzyme. , 1996, The Biochemical journal.

[255]  T. Blundell,et al.  The three‐dimensional structure of Escherichia coli porphobilinogen deaminase at 1.76‐Å resolution , 1996, Proteins: Structure, Function, and Bioinformatics.

[256]  H. Dailey,et al.  Protoporphyrinogen Oxidase of Myxococcus xanthus , 1996, The Journal of Biological Chemistry.

[257]  S. Litwin,et al.  Bradyrhizobium japonicum Porphobilinogen Synthase Uses Two Mg(II) and Monovalent Cations (*) , 1996, The Journal of Biological Chemistry.

[258]  H. Kohno,et al.  Mouse coproporphyrinogen oxidase is a copper-containing enzyme: expression in Escherichia coli and site-directed mutagenesis. , 1996, Biochimica et biophysica acta.

[259]  F. Leeper,et al.  Biosynthesis of porphyrins and related macrocycles. Part 45. Determination by a novel X-ray method of the absolute configuration of the spiro lactam which inhibits uroporphyrinogen III synthase (cosynthetase) , 1996 .

[260]  P. Roepstorff,et al.  Characterization of the different spectral forms of glutamate 1-semialdehyde aminotransferase by mass spectrometry. , 1995, Biochemistry.

[261]  S Kaplan,et al.  Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene , 1995, Journal of bacteriology.

[262]  S. Beale,et al.  Anaerobic protoporphyrin biosynthesis does not require incorporation of methyl groups from methionine , 1995, Journal of bacteriology.

[263]  S. Gul,et al.  Evidence for conformational changes in Escherichia coli porphobilinogen deaminase during stepwise pyrrole chain elongation monitored by increased reactivity of cysteine-134 to alkylation by N-ethylmaleimide. , 1995, Biochemistry.

[264]  R. S. Burkhalter,et al.  Resolution of the nirD locus for heme d1 synthesis of cytochrome cd1 (respiratory nitrite reductase) from Pseudomonas stutzeri. , 1995, European journal of biochemistry.

[265]  J. Helmann,et al.  Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[266]  M. R. O'Brian,et al.  A Mutant Bradyrhizobium japonicum δ-Aminolevulinic Acid Dehydratase with an Altered Metal Requirement Functions in Situ for Tetrapyrrole Synthesis in Soybean Root Nodules (*) , 1995, The Journal of Biological Chemistry.

[267]  A. Battersby,et al.  Expression, purification and characterisation of the product from the Bacillus subtilis hemD gene, uroporphyrinogen III synthase. , 1995, European journal of biochemistry.

[268]  M. Guerinot,et al.  Oxygen control of the Bradyrhizobium japonicum hemA gene , 1995, Journal of bacteriology.

[269]  D. Jahn,et al.  Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase , 1995, Journal of bacteriology.

[270]  K. Indest,et al.  Nucleotide Sequence of the Rhodobacter capsulatus hemB Gene , 1995, Plant physiology.

[271]  R. Labbe-Bois,et al.  Isolation of the gene HEM4 encoding uroporphyrinogen III synthase in Saccharomyces cerevisiae , 1995, Yeast.

[272]  F. Leeper,et al.  Stereochemical studies on the proposed spiro intermediate for the biosynthesis of the natural porphyrins: determination by a novel X-ray method of the absolute configuration of the spirolactam which inhibits cosynthetase , 1995 .

[273]  R. Thauer,et al.  Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. , 2007, Ciba Foundation symposium.

[274]  T. Blundell,et al.  The three‐dimensional structures of mutants of porphobilinogen deaminase: Toward an understanding of the structural basis of acute intermittent porphyria , 1994, Protein science : a publication of the Protein Society.

[275]  L. Hederstedt,et al.  Bacillus subtilis HemY is a peripheral membrane protein essential for protoheme IX synthesis which can oxidize coproporphyrinogen III and protoporphyrinogen IX , 1994, Journal of bacteriology.

[276]  M. Warren,et al.  Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. , 1994, The Biochemical journal.

[277]  K. Xu,et al.  Cloning, DNA sequence, and complementation analysis of the Salmonella typhimurium hemN gene encoding a putative oxygen-independent coproporphyrinogen III oxidase , 1994, Journal of bacteriology.

[278]  P. Jordan,et al.  Evidence for participation of aspartate-84 as a catalytic group at the active site of porphobilinogen deaminase obtained by site-directed mutagenesis of the hemC gene from Escherichia coli. , 1994, Biochemistry.

[279]  P. Christen,et al.  Evolutionary relationships among pyridoxal‐5′‐phosphate‐dependent enzymes , 1994 .

[280]  P. Meissner,et al.  Expression of a cloned protoporphyrinogen oxidase. , 1994, The Journal of biological chemistry.

[281]  P. Christen,et al.  Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. , 1994, European journal of biochemistry.

[282]  Jang-Su Park,et al.  L-Methionine methyl is specifically incorporated into the C-2 and C-7 positions of the porphyrin of cytochrome c3 in a strictly anaerobic bacterium, Desulfovibrio vulgaris , 1993 .

[283]  A Sasarman,et al.  Nucleotide sequence of the hemG gene involved in the protoporphyrinogen oxidase activity of Escherichia coli K12. , 1993, Canadian journal of microbiology.

[284]  C. Roessner,et al.  The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase , 1993, FEBS letters.

[285]  J. Harwood,et al.  Properties of the pyridoxaldimine form of glutamate semialdehyde aminotransferase (glutamate-1-semialdehyde 2,1-aminomutase) and analysis of its role as an intermediate in the formation of aminolaevulinate. , 1993, The Biochemical journal.

[286]  H. Dailey,et al.  In situ conversion of coproporphyrinogen to heme by murine mitochondria: Terminal steps of the heme biosynthetic pathway , 1993, Protein science : a publication of the Protein Society.

[287]  J. Lewis,et al.  Biosynthesis of porphyrins and related macrocycles. Part 40. Synthesis of a spiro-lactam related to the proposed spiro-intermediate for porphyrin biosynthesis: inhibition of cosynthetase , 1993 .

[288]  C. Hunter,et al.  A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. I. Molecular cloning, transposon mutagenesis and sequence analysis of the gene , 1992, Molecular microbiology.

[289]  T. Blundell,et al.  Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site , 1992, Nature.

[290]  D. Jahn,et al.  Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. , 1992, Biochemistry.

[291]  M. R. O'Brian,et al.  Characterization of a Bradyrhizobium japonicum ferrochelatase mutant and isolation of the hemH gene , 1992, Journal of bacteriology.

[292]  B. Grimm,et al.  The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. , 1992, European journal of biochemistry.

[293]  D. Söll,et al.  Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. , 1992, Trends in biochemical sciences.

[294]  T. Blundell,et al.  Crystallization and preliminary X-ray investigation of Escherichia coli porphobilinogen deaminase. , 1992, Journal of molecular biology.

[295]  J. Harwood,et al.  Mechanism of glutamate semialdehyde aminotransferase. Roles of diamino- and dioxo-intermediates in the synthesis of aminolevulinate. , 1992, The Journal of biological chemistry.

[296]  M. Akhtar Chapter 2 Mechanism and stereochemistry of the enzymes involved in the conversion of uroporphyrinogen III into haem , 1991 .

[297]  P. Jordan Chapter 1 The biosynthesis of 5-aminolaevulinic acid and its transformation into uroporphyrinogen III , 1991 .

[298]  M. Warren,et al.  Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. , 1990, Trends in biochemical sciences.

[299]  R. Timkovich,et al.  C-methylation occurs during the biosynthesis of heme d1. , 1990, The Journal of biological chemistry.

[300]  M. Warren,et al.  The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. , 1990, The Biochemical journal.

[301]  Andrew D. Miller,et al.  Biosynthesis of porphyrins and related macrocycles. Part 35. Discovery of a novel dipyrrolic cofactor essential for the catalytic action of hydroxymethylbilane synthase (porphobilinogen deaminase) , 1990 .

[302]  H. Dailey Biosynthesis of heme and chlorophylls , 1990 .

[303]  P. Jordan,et al.  Purification and properties of uroporphyrinogen III synthase (co-synthase) from an overproducing recombinant strain of Escherichia coli K-12. , 1989, The Biochemical journal.

[304]  L. Debussche,et al.  Purification and characterization of S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase from Pseudomonas denitrificans , 1989, Journal of bacteriology.

[305]  M. Warren,et al.  Investigation into the nature of substrate binding to the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase. , 1988, Biochemistry.

[306]  C. S. Russell,et al.  Availability of porphobilinogen controls appearance of porphobilinogen deaminase activity in Escherichia coli K-12 , 1988, Journal of bacteriology.

[307]  M. Warren,et al.  Purification, crystallization and properties of porphobilinogen deaminase from a recombinant strain of Escherichia coli K12. , 1988, The Biochemical journal.

[308]  H. Williams,et al.  Identification of a cysteine residue as the binding site for the dipyrromethane cofactor at the active site of Escherichia coli porphobilinogen deaminase , 1988, FEBS letters.

[309]  A. Miller,et al.  Evidence that the pyrromethane cofactor of hydroxymethylbilane synthase (porphobilinogen deaminase) is bound through the sulphur atom of a cysteine residue. , 1988, The Biochemical journal.

[310]  G. C. Ferreira,et al.  Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex. , 1988, The Journal of biological chemistry.

[311]  F. Leeper,et al.  Biosynthesis of porphyrins and related macrocycles. Part 30. Synthesis of the macrocycle of the spiro system proposed as an intermediate generated by cosynthetase , 1988 .

[312]  P. Jordan,et al.  Nucleotide sequence of hemD, the second gene in the hem operon of Escherichia coli K-12. , 1987, Nucleic acids research.

[313]  M. Warren,et al.  Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase , 1987, FEBS letters.

[314]  C. Lim,et al.  High-performance liquid chromatography of type-III heptocarboxylic porphyrinogen isomers. , 1987, The Biochemical journal.

[315]  Y. Echelard,et al.  Molecular cloning and sequencing of the hemD gene of Escherichia coli K-12 and preliminary data on the Uro operon , 1987, Journal of bacteriology.

[316]  S. Tsai,et al.  Purification and properties of uroporphyrinogen III synthase from human erythrocytes. , 1987, The Journal of biological chemistry.

[317]  Andrew D. Miller,et al.  Biosynthesis of the natural porphyrins: proof that hydroxymethylbilane synthase (porphobilinogen deaminase) uses a novel binding group in its catalytic action , 1987 .

[318]  P. Jordan,et al.  Nucleotide sequence of the hemC locus encoding porphobilinogen deaminase of Escherichia coli K12. , 1986, Nucleic acids research.

[319]  D. Söll,et al.  The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA , 1986, Nature.

[320]  H. Dailey,et al.  Ferrochelatase from Rhodopseudomonas sphaeroides: substrate specificity and role of sulfhydryl and arginyl residues , 1986, Journal of bacteriology.

[321]  H. A. Broadbent,et al.  Biosynthesis of porphyrins and related macrocycles , 1986 .

[322]  W. Trösch,et al.  Sirohydrochlorin, a precursor of factor F430 biosynthesis in Methanobacterium thermoautotrophicum , 1985 .

[323]  H. Dailey,et al.  Ferric iron reductase of Rhodopseudomonas sphaeroides , 1985, Journal of bacteriology.

[324]  F. Leeper,et al.  The spiro intermediate proposed for biosynthesis of the natural porphyrins: synthesis and properties of its macrocycle , 1985 .

[325]  H. Dailey,et al.  Siderophore utilization and iron uptake by Rhodopseudomonas sphaeroides. , 1984, Archives of biochemistry and biophysics.

[326]  W. Y. Wang,et al.  delta-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. , 1984, Science.

[327]  J. Seehra,et al.  Anaerobic and aerobic coproporphyrinogen III oxidases of Rhodopseudomonas spheroides. Mechanism and stereochemistry of vinyl group formation. , 1983, The Biochemical journal.

[328]  C. Fookes,et al.  Biosynthesis of porphyrins and related macrocycles. Part 21. The interaction of deaminase and its product (hydroxymethylbilane) and the relationship between deaminase and cosynthetase , 1983 .

[329]  C. Fookes,et al.  Linear tetrapyrrolic intermediates for biosynthesis of the natural porphyrins , 1983 .

[330]  H. Dailey Purification and characterization of membrane-bound ferrochelatase from Rhodopseudomonas sphaeroides. , 1982, The Journal of biological chemistry.

[331]  P. Jordan Uroporphyrinogen III cosynthetase: a direct assay method. , 1982, Enzyme.

[332]  A. Berry,et al.  Mechanism of action of porphobilinogen deaminase. The participation of stable enzyme substrate covalent intermediates between porphobilinogen and the porphobilinogen deaminase from Rhodopseudomonas spheroides. , 1981, The Biochemical journal.

[333]  C. Fookes,et al.  Biosynthesis of Natural Porphyrins: Studies with Isomeric Hydroxymethylbilanes on the Specificity and Action of Cosynthetase†‡ , 1981 .

[334]  T. Yoshinaga,et al.  Coproporphyrinogen oxidase. I. Purification, properties, and activation by phospholipids. , 1980, The Journal of biological chemistry.

[335]  J. Seehra,et al.  The biosynthesis of uroporphyrinogen III: Order of assembly of the four porphobilinogen molecules in the formation of the tetrapyrrole ring , 1979, FEBS letters.

[336]  N. Lewis,et al.  Biosynthesis of vitamin B12: experiments on loss of C-20 from the precursor macrocycle , 1979 .

[337]  C. Fookes,et al.  Biosynthesis of the natural porphyrins: experiments on the ring-closure steps and with the hydroxy-analogue of porphobilinogen , 1979 .

[338]  C. Fookes,et al.  Order of assembly of the four pyrrole rings during biosynthesis of the natural porphyrins , 1979 .

[339]  P. Jordan,et al.  13 C n.m.r. evidence for a new intermediate, pre-uroporphyrinogen, in the enzymic transformation of porphobilinogen into uroporphyrinogens I and III , 1979 .

[340]  Nicholas J. Jacobs,et al.  Quinones as hydrogen carriers for a late step in anaerobic heme biosynthesis in Escherichia coli. , 1978, Biochimica et biophysica acta.

[341]  J. Barrett,et al.  Localization of ferrochelatase and of newly synthesized haem in membrane fractions from Rhodopseudomonas spheroides. , 1978, The Biochemical journal.

[342]  D. Nandi δ-Aminolevulinic acid synthase of Rhodopseudomonas spheroides , 1978 .

[343]  S. Gough,et al.  Biosynthesis of Δ-aminolevulinate in greening barley leaves: Glutamate 1-semialdehyde aminotransferase , 1978 .

[344]  A. Battersby,et al.  Biosynthesis of vitamin B12: proof of A-B structure for sirohydrochlorin by its specific incorporation into cobyrinic acid , 1978 .

[345]  D. Nandi Delta-aminolevulinic acid synthase of rhodopseudomonas spheroides. Binding of pyridoxal phosphate to the enzyme. , 1978, Archives of biochemistry and biophysics.

[346]  G. Elder,et al.  Factors determining the sequence of oxidative decarboxylation of the 2- and 4-propionate substituents of coproporphyrinogen III by coproporphyrinogen oxidase in rat liver. , 1978, The Biochemical journal.

[347]  G. Müller,et al.  [On the preparation of intermediates in cobyrinic acid biosynthesis by suspensions of Propionibacterium shermanii (author's transl)]. , 1977, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[348]  H. Dailey Purification and characterization of the membrane-bound ferrochelatase from Spirillum itersonii , 1977, Journal of bacteriology.

[349]  Nicholas J. Jacobs,et al.  The late steps of anaerobic heme biosynthesis in E. coli: role for quinones in protoporphyrinogen oxidation. , 1977, Biochemical and biophysical research communications.

[350]  G. Müller,et al.  [On cobyrinic acid biosynthesis. Novel methylated hydroporphyrins and their role in cobyrinis acid formation (author's transl)]. , 1977, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[351]  H. Dailey,et al.  Reduction of iron and synthesis of protoheme by Spirillum itersonii and other organisms , 1977, Journal of bacteriology.

[352]  Nicholas J. Jacobs,et al.  Evidence for involvement of the electron transport system at a late step of anaerobic microbial heme synthesis. , 1977, Biochimica et biophysica acta.

[353]  G. Müller,et al.  Zur Cobyrinsäure-Biosynthese. Gewinnung von Zwischenprodukten der Cobyrinsäure-Biosynthese mit Zellsuspensionen von Propionibacterium shermanii , 1977 .

[354]  G. Müller,et al.  Zur Cobyrinsäure-Biosynthese. Neuartige, methylierte Hydroporphyrine und deren Bedeutung bei der Cobyrinsäure-Bildung , 1977 .

[355]  S. Matlin,et al.  Macrocyclic intermediates in the biosynthesis of porphyrins. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[356]  M. Akhtar,et al.  Mechanism and stereochemistry of vinyl-group formation in haem biosynthesis. , 1976, European journal of biochemistry.

[357]  R. C. Davies,et al.  Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides a role for trisulphides. , 1975, The Biochemical journal.

[358]  Nicholas J. Jacobs,et al.  Fumarate as alternate electron acceptor for the late steps of anaerobic heme synthesis in Escherichia coli. , 1975, Biochemical and biophysical research communications.

[359]  S. Granick,et al.  Biosynthesis of delta-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[360]  K. James,et al.  Stereochemistry of biosynthesis of the vinyl groups of protoporphyrin-IX: a short synthesis of porphobilinogen , 1975 .

[361]  W. Polglase,et al.  Aerobic and anaerobic coproporphyrinogenase activities in extracts from Saccharomyces cerevisiae. , 1974, The Journal of biological chemistry.

[362]  H. Dailey,et al.  Ferrochelatase activity in wild-type and mutant strains of Spirillum itersonii. Solubilization with chaotropic reagents. , 1974, Archives of biochemistry and biophysics.

[363]  Kevin M Smith,et al.  Pyrroles and related compounds. Part XXXII. Biosynthesis of protoporphyrin-IX from coproporphyrinogen-III , 1974 .

[364]  A. Neuberger,et al.  Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides. The purification and properties of an endogenous activator of the enzyme. , 1973, The Biochemical journal.

[365]  A. Neuberger,et al.  Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides. The involvement of sulphur metabolism. , 1973, The Biochemical journal.

[366]  P. Jordan,et al.  Mechanism and stereochemistry of the 5-aminolaevulinate synthetase reaction. , 1973, The Biochemical journal.

[367]  S. Beale,et al.  14 C incorporation from exogenous compounds into -aminolevulinic acid by greening cucumber cotyledons. , 1973, Biochemical and biophysical research communications.

[368]  R. Kassner,et al.  Heme formation from Fe(II) and porphyrin in the absence of ferrochelatase activity. , 1973, Biochimica et biophysica acta.

[369]  Nicholas J. Jacobs,et al.  Comparative Effect of Oxygen and Nitrate on Protoporphyrin and Heme Synthesis from Δ-Amino Levulinic Acid in Bacterial Cultures , 1972, Journal of bacteriology.

[370]  G. H. Tait Coproporphyrinogenase activities in extracts of Rhodopseudomonas spheroides and Chromatium strain D. , 1972, The Biochemical journal.

[371]  S. Sano,et al.  Comparative studies on nonenzymic and enzymic protoheme formation. , 1972, Biochimica et biophysica acta.

[372]  Nicholas J. Jacobs,et al.  Characterization of the Late Steps of Microbial Heme Synthesis: Conversion of Coproporphyrinogen to Protoporphyrin , 1971, Journal of bacteriology.

[373]  O. Jones,et al.  Ferrochelatase of Rhodopseudomonas spheroides. , 1970, The Biochemical journal.

[374]  Nicholas J. Jacobs,et al.  Formation of Protoporphyrin from Coproporphyrinogen in Extracts of Various Bacteria , 1970, Journal of bacteriology.

[375]  G. H. Tait Coproporphyrinogenase activity in extracts from Rhodopseudomonas spheroides. , 1969, Biochemical and biophysical research communications.

[376]  O. Jones,et al.  The structural organization of haem synthesis in rat liver mitochondria. , 1969, The Biochemical journal.

[377]  A. F. Ehteshamuddin Anaerobic formation of protoporphyrin IX from coproporphyrinogen III by bacterial preparations. , 1968, The Biochemical journal.

[378]  C. Rimington,et al.  Purification and properties of coproporphyrinogenase. , 1965, The Biochemical journal.

[379]  R. J. Porra,et al.  HAEM SYNTHASE AND COBALT PORPHYRIN SYNTHASE IN VARIOUS MICRO-ORGANISMS. , 1965, The Biochemical journal.

[380]  R. J. Porra,et al.  HAEMOPROTEINS AND HAEM SYNTHESIS IN FACULTATIVE PHOTOSYNTHETIC AND DENITRIFYING BACTERIA. , 1965, The Biochemical journal.

[381]  A. Neuberger,et al.  Studies on the biosynthesis of porphyrin and bacteriochlorophyll by Rhodopseudomonas spheroides. 5. Zinc-protoporphyrin chelatase. , 1964, The Biochemical journal.

[382]  J. Lascelles Tetrapyrrole biosynthesis and its regulation , 1964 .

[383]  R. J. Porra,et al.  The enzymic conversion of coproporphyrinogen 3 into protoporphyrin 9. , 1964, The Biochemical journal.

[384]  R. J. Porra,et al.  The enzymic conversion of coproporphyrinogen III into protoporphyrin IX , 1964 .

[385]  Burnham Bf,et al.  Control of Porphyrin Biosynthesis through a Negative-Feedback Mechanism. STUDIES WITH PREPARATIONS OF δ-AMINOLAEVULATE SYNTHETASE AND δ-AMINOLAEVULATE DEHYDRATASE FROM RHODOPSEUDOMONAS SPHEROIDES , 1963 .

[386]  K.,et al.  Studies on the biosynthesis of porphyrin and bacteriochlorophyll by Rhodopseudomonas spheroides. 2. The effects of ethionine and threonine. , 1962, The Biochemical journal.

[387]  S. Granick,et al.  Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. , 1961, The Journal of biological chemistry.

[388]  J. Mathewson,et al.  Biosynthesis of Pyrrole Pigments: A Mechanism for Porphobilinogen Polymerization1 , 1961 .

[389]  J. Lascelles The synthesis of enzymes concerned in bacteriochlorophyll formation in growing cultures of Rhodopseudomonas spheroides. , 1960, Journal of general microbiology.

[390]  A. Kumar,et al.  The enzymatic synthesis of delta-aminolevulinic acid. , 1958, The Journal of biological chemistry.

[391]  K. Gibson,et al.  Initial stages in the biosynthesis of porphyrins. 2. The formation of delta-aminolaevulic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. , 1958, The Biochemical journal.

[392]  J. Neilands,et al.  The iron and porphyrin metabolism of Micrococcus lysodeikticus. , 1957, The Journal of biological chemistry.

[393]  J. Lascelles The synthesis of porphyrins and bacteriochlorophyll by cell suspensions of Rhodopseudomonas spheroides. , 1956, The Biochemical journal.

[394]  C. S. Russell,et al.  δ-AMINOLEVULINIC ACID, ITS ROLE IN THE BIOSYNTHESIS OF PORPHYRINS AND PURINES1 , 1953 .

[395]  D. Shemin,et al.  The mechanism of porphyrin formation; the formation of a succinyl intermediate from succinate. , 1952, The Journal of biological chemistry.

[396]  N. Radin,et al.  The rôle of acetic acid in the biosynthesis of heme. , 1950, The Journal of biological chemistry.

[397]  A. Neuberger,et al.  The biogenesis of porphyrins. 2. The origin of the methyne carbon atoms. , 1950, The Biochemical journal.

[398]  A. M. Pappenheimer Diphtheria toxin; a reinvestigation of the effect of iron on toxin and porphyrin production. , 1947, The Journal of biological chemistry.

[399]  D. Rittenberg,et al.  THE UTILIZATION OF GLYCINE FOR THE SYNTHESIS OF A PORPHYRIN , 1945 .

[400]  J.,et al.  Purification and Properties of Uroporphyrinogen I Synthase from Human Erythrocytes IDENTIFICATION OF STABLE ENZYME-SUBSTRATE INTERMEDIATES , 2022 .