Complexity of Combinations of Qualitative Constraint Satisfaction Problems

The CSP of a first-order theory $T$ is the problem of deciding for a given finite set $S$ of atomic formulas whether $T \cup S$ is satisfiable. Let $T_1$ and $T_2$ be two theories with countably infinite models and disjoint signatures. Nelson and Oppen presented conditions that imply decidability (or polynomial-time decidability) of $\mathrm{CSP}(T_1 \cup T_2)$ under the assumption that $\mathrm{CSP}(T_1)$ and $\mathrm{CSP}(T_2)$ are decidable (or polynomial-time decidable). We show that for a large class of $\omega$-categorical theories $T_1, T_2$ the Nelson-Oppen conditions are not only sufficient, but also necessary for polynomial-time tractability of $\mathrm{CSP}(T_1 \cup T_2)$ (unless P=NP).

[1]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[2]  Manuel Bodirsky,et al.  Reducts of finitely bounded homogeneous structures, and lifting tractability from finite-domain constraint satisfaction , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[3]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.

[4]  Greg Nelson,et al.  Fast Decision Procedures Based on Congruence Closure , 1980, JACM.

[5]  Manuel Bodirsky,et al.  The Complexity of Equality Constraint Languages , 2006, Theory of Computing Systems.

[6]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[7]  Peter J. Cameron,et al.  Homogeneous Permutations , 2002, Electron. J. Comb..

[8]  Franz Baader,et al.  Combining Constraint Solving , 2001, CCL.

[9]  Michael Pinsker,et al.  Topological Birkhoff , 2012, ArXiv.

[10]  Samuel Braunfeld,et al.  Towards the undecidability of atomicity for permutation classes via the undecidability of joint embedding for hereditary graph classes , 2019, 1903.11932.

[11]  Xueliang Li,et al.  Solution to a Conjecture on the Maximum Skew-Spectral Radius of Odd-Cycle Graphs , 2014, Electron. J. Comb..

[12]  Dmitriy Zhuk,et al.  A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[13]  Manuel Bodirsky,et al.  A fast algorithm and datalog inexpressibility for temporal reasoning , 2010, TOCL.

[14]  Howard Straubing,et al.  Theory of Computing Systems , 2008 .

[15]  Barnaby Martin,et al.  Constraint satisfaction problems for reducts of homogeneous graphs , 2016, ICALP.

[16]  Andrei A. Bulatov,et al.  A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[17]  Maria Paola Bonacina,et al.  Decidability and Undecidability Results for Nelson-Oppen and Rewrite-Based Decision Procedures , 2006, IJCAR.

[18]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[19]  Manuel Bodirsky,et al.  Non-dichotomies in Constraint Satisfaction Complexity , 2008, ICALP.

[20]  Heribert Vollmer,et al.  Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar] , 2008, Complexity of Constraints.

[21]  Didier Clouteau,et al.  Mémoire d’habilitation á diriger des recherches , 2011 .

[22]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[23]  Manuel Bodirsky,et al.  The complexity of temporal constraint satisfaction problems , 2010, JACM.

[24]  Libor Barto,et al.  The equivalence of two dichotomy conjectures for infinite domain constraint satisfaction problems , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[25]  Libor Barto,et al.  The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[26]  Michael Kompatscher,et al.  On the Update Operation in Skew Lattices , 2018, FLAP.

[27]  Jaroslav Nesetril,et al.  Constraint Satisfaction with Countable Homogeneous Templates , 2003, J. Log. Comput..

[28]  Dana,et al.  JSL volume 88 issue 4 Cover and Front matter , 1983, The Journal of Symbolic Logic.

[29]  Libor Barto,et al.  The wonderland of reflections , 2015, Israel Journal of Mathematics.

[30]  Peter J. Cameron,et al.  Cycle Index, Weight Enumerator, and Tutte Polynomial , 2002, Electron. J. Comb..

[31]  Nathanael Ackerman,et al.  INVARIANT MEASURES CONCENTRATED ON COUNTABLE STRUCTURES , 2012, Forum of Mathematics, Sigma.

[32]  Roberto Bruttomesso,et al.  Quantifier-free interpolation in combinations of equality interpolating theories , 2014, ACM Trans. Comput. Log..

[33]  Sunil Arya,et al.  Space-time tradeoffs for approximate nearest neighbor searching , 2009, JACM.

[34]  Venkatesan Guruswami,et al.  The Constraint Satisfaction Problem: Complexity and Approximability (Dagstuhl Seminar 15301) , 2015, Dagstuhl Reports.

[35]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[36]  G. Cherlin,et al.  The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous N-Tournaments , 1998 .

[37]  Peter Jonsson,et al.  The Complexity of Phylogeny Constraint Satisfaction Problems , 2015, ACM Trans. Comput. Log..

[38]  Manuel Bodirsky,et al.  The Complexity of Combinations of Qualitative Constraint Satisfaction Problems , 2020, Log. Methods Comput. Sci..

[39]  Manuel Bodirsky,et al.  Complexity Classification in Infinite-Domain Constraint Satisfaction , 2012, ArXiv.

[40]  Peter Jonsson,et al.  The Reducts of the homogeneous Binary Branching C-Relation , 2016, J. Symb. Log..

[41]  Ulrike Sattler,et al.  7th International Joint Conference on Automated Reasoning , 2014 .

[42]  Michael Pinsker,et al.  PROJECTIVE CLONE HOMOMORPHISMS , 2014, The Journal of Symbolic Logic.

[43]  Michael Pinsker,et al.  Permutations on the Random Permutation , 2015, Electron. J. Comb..

[44]  Peter Jonsson,et al.  A Model-Theoretic View on Qualitative Constraint Reasoning , 2017, J. Artif. Intell. Res..

[45]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[46]  A. H. Lachlan,et al.  Countable homogeneous tournaments , 1984 .