Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe

We report several synergistic effects in Hg alloying of SnTe to enhance the power factor and overall figure of merit ZT. Hg alloying decreases the energy separation between the two valence bands, leading to pronounced band convergence that improves the Seebeck coefficient. Hg alloying of SnTe also significantly enlarges the band gap thereby effectively suppressing the bipolar diffusion. Collectively, this results in high ZT of ∼1.35 at 910 K for 2% Bi-doped SnTe with 3%HgTe. The solubility limit of Hg in SnTe is less than 3 mol%, and above this level we observe HgTe precipitates in the SnTe matrix, typically trapped at grain boundary triple junctions. The strong point defect scattering of phonons caused by Hg alloying coupled with mesoscale scattering via grain boundaries contributes to a great reduction of lattice thermal conductivity. The multiple synergistic roles that Hg plays in regulating the electron and phonon transport in SnTe provide important new insights into continued optimization of SnTe-based and related materials.

[1]  M. Kanatzidis,et al.  Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3 , 2014, Nature Communications.

[2]  Hui Sun,et al.  High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. , 2014, Journal of the American Chemical Society.

[3]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[4]  M. Kanatzidis,et al.  High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials. , 2014, Journal of the American Chemical Society.

[5]  B. Gu,et al.  Microscopic origin of the p -type conductivity of the topological crystalline insulator SnTe and the effect of Pb alloying , 2014 .

[6]  A. Grytsiv,et al.  n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0 , 2014 .

[7]  X. Su,et al.  Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+xTe1−x via band structure modification and significant point defect scattering , 2013 .

[8]  M. Kanatzidis,et al.  All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance , 2013 .

[9]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[10]  B. Liao,et al.  High thermoelectric performance by resonant dopant indium in nanostructured SnTe , 2013, Proceedings of the National Academy of Sciences.

[11]  G. J. Snyder,et al.  Charge‐Compensated Compound Defects in Ga‐containing Thermoelectric Skutterudites , 2013 .

[12]  S. Gorsse,et al.  Lattice dynamics and structure of GeTe, SnTe and PbTe , 2013 .

[13]  Vinayak P. Dravid,et al.  High performance bulk thermoelectrics via a panoscopic approach , 2013 .

[14]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[15]  G. J. Snyder,et al.  High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe , 2012 .

[16]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. , 2012, Journal of the American Chemical Society.

[17]  Wenqing Zhang,et al.  Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. , 2012, Chemical communications.

[18]  M. Kanatzidis,et al.  High thermoelectric figure of merit in nanostructured p-type PbTe–MTe (M = Ca, Ba) , 2011 .

[19]  A. Mar,et al.  Thermoelectric Properties of p-type CuInSe 2 Chalcopyrites Enhanced by Introduction of Manganese , 2011 .

[20]  M. Kanatzidis,et al.  Thermoelectrics from abundant chemical elements: high-performance nanostructured PbSe-PbS. , 2011, Journal of the American Chemical Society.

[21]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .

[22]  M. Kanatzidis,et al.  High-temperature thermoelectric properties of n-type PbSe doped with Ga, In, and Pb , 2011 .

[23]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[24]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[25]  Cheng-Ting Hsu,et al.  Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators , 2011 .

[26]  Jihui Yang,et al.  Thermoelectric properties of ternary diamondlike semiconductors Cu2Ge1+xSe3 , 2010 .

[27]  M. Kanatzidis,et al.  Thermoelectric enhancement in PbTe with K or Na codoping from tuning the interaction of the light- and heavy-hole valence bands , 2010, 1007.1637.

[28]  D. Singh Thermopower of SnTe from Boltzmann Transport Calculations , 2010, 1006.4151.

[29]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[30]  Alex Zunger,et al.  Accurate prediction of defect properties in density functional supercell calculations , 2009 .

[31]  Jean-Pierre Fleurial,et al.  Thermoelectric power generation materials: Technology and application opportunities , 2009 .

[32]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[33]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[34]  Thierry Caillat,et al.  Thermoelectric Materials for Space and Automotive Power Generation , 2006 .

[35]  G. Meisner,et al.  Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds , 2004 .

[36]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[37]  C. Okoye Electronic and optical properties of SnTe and GeTe , 2002 .

[38]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[39]  Terry M. Tritt,et al.  Holey and Unholey Semiconductors , 1999, Science.

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  E. Sabo,et al.  Tin telluride based thermoelectrical alloys , 1998 .

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[44]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[45]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[46]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[47]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[48]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[49]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[50]  F. A. Dahlen,et al.  Brittle frictional mountain building: 2. Thermal structure and heat budget , 1989 .

[51]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[52]  S. Rabii Energy-Band Structure and Electronic Properties of SnTe , 1969 .

[53]  F. D. Rosi Thermoelectricity and thermoelectric power generation , 1968 .

[54]  S. Bukshpan Determination of the Debye temperature of SnTe using the Mössbauer effect in 119Sn and 125Te , 1968 .

[55]  T. Irie Lattice Thermal Conductivity of Disordered Alloys of Ternary Compound Semiconductors Cu2(Sn, Ge)(Se, S)3 (Ag, Pb, Sb)Te2, and (Ag, Sn, Sb)Te2 , 1966 .

[56]  J. Dimmock,et al.  Band Structure and Laser Action in Pb x Sn 1-x Te , 1966 .

[57]  P. J. Stiles,et al.  New Type of Negative Resistance in Barrier Tunneling , 1966 .

[58]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[59]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[60]  J. Kafalas,et al.  EVIDENCE THAT SnTe IS A SEMICONDUCTOR , 1964 .

[61]  R. F. Brebrick,et al.  Anomalous Thermoelectric Power as Evidence for Two Valence Bands in SnTe , 1963 .

[62]  L. Aukerman,et al.  High‐Temperature Hall Coefficient in GaAs , 1960 .

[63]  Vinayak P. Dravid,et al.  The panoscopic approach to high performance thermoelectrics , 2014 .

[64]  M. Kanatzidis,et al.  Lead‐Free Thermoelectrics: High Figure of Merit in p‐type AgSnmSbTem+2 , 2012 .

[65]  J. Heremans,et al.  SnTe–AgSbTe2 Thermoelectric Alloys , 2012 .

[66]  George S. Nolas,et al.  Thermoelectrics: Basic Principles and New Materials Developments , 2001 .

[67]  Chih Wu Analysis of waste-heat thermoelectric power generators , 1996 .

[68]  L. Stil’bans,et al.  Semiconducting Lead Chalcogenides , 1970 .

[69]  Ya. N. Nasirov,et al.  Thermoelectric Properties of Solid Solutions Based on SnTe‐AIITe‐Type Tin Telluride , 1969 .

[70]  R. S. Allgaier,et al.  Hall Coefficient Behavior and the Second Valence Band in Lead Telluride , 1966 .