SAXS analysis of the tRNA-modifying enzyme complex MnmE/MnmG reveals a novel interaction mode and GTP-induced oligomerization

Transfer ribonucleic acid (tRNA) modifications, especially at the wobble position, are crucial for proper and efficient protein translation. MnmE and MnmG form a protein complex that is implicated in the carboxymethylaminomethyl modification of wobble uridine (cmnm5U34) of certain tRNAs. MnmE is a G protein activated by dimerization (GAD), and active guanosine-5'-triphosphate (GTP) hydrolysis is required for the tRNA modification to occur. Although crystal structures of MnmE and MnmG are available, the structure of the MnmE/MnmG complex (MnmEG) and the nature of the nucleotide-induced conformational changes and their relevance for the tRNA modification reaction remain unknown. In this study, we mainly used small-angle X-ray scattering to characterize these conformational changes in solution and to unravel the mode of interaction between MnmE, MnmG and tRNA. In the nucleotide-free state MnmE and MnmG form an unanticipated asymmetric α2β2 complex. Unexpectedly, GTP binding promotes further oligomerization of the MnmEG complex leading to an α4β2 complex. The transition from the α2β2 to the α4β2 complex is fast, reversible and coupled to GTP binding and hydrolysis. We propose a model in which the nucleotide-induced changes in conformation and oligomerization of MnmEG form an integral part of the tRNA modification reaction cycle.

[1]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[2]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[3]  Lode Wyns,et al.  Intricate Interactions within the ccd Plasmid Addiction System* , 2002, The Journal of Biological Chemistry.

[4]  Janusz M Bujnicki,et al.  Sequence–structure–function analysis of the bifunctional enzyme MnmC that catalyses the last two steps in the biosynthesis of hypermodified nucleoside mnm5s2U in tRNA , 2008, Proteins.

[5]  J. Frère,et al.  β-Lactamase Inhibitors Derived from Single-Domain Antibody Fragments Elicited in the Camelidae , 2001, Antimicrobial Agents and Chemotherapy.

[6]  N. Verstraeten,et al.  The Universally Conserved Prokaryotic GTPases , 2011, Microbiology and Molecular Reviews.

[7]  John A. Tainer,et al.  Accurate assessment of mass, models and resolution by small-angle scattering , 2013, Nature.

[8]  H. Steinhoff,et al.  Stabilization of G Domain Conformations in the tRNA-modifying MnmE-GidA Complex Observed with Double Electron Electron Resonance Spectroscopy* , 2010, The Journal of Biological Chemistry.

[9]  Ruth Nussinov,et al.  Efficient Unbound Docking of Rigid Molecules , 2002, WABI.

[10]  Peter F. Stadler,et al.  tRNAdb 2009: compilation of tRNA sequences and tRNA genes , 2008, Nucleic Acids Res..

[11]  V. Víctor,et al.  Characterization of Human GTPBP3, a GTP-Binding Protein Involved in Mitochondrial tRNA Modification , 2008, Molecular and Cellular Biology.

[12]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[13]  H. Steinhoff,et al.  Kissing G Domains of MnmE Monitored by X-Ray Crystallography and Pulse Electron Paramagnetic Resonance Spectroscopy , 2009, PLoS biology.

[14]  O. Nureki,et al.  Conserved cysteine residues of GidA are essential for biogenesis of 5-carboxymethylaminomethyluridine at tRNA anticodon. , 2009, Structure.

[15]  M. Medina,et al.  The tRNA-modifying function of MnmE is controlled by post-hydrolysis steps of its GTPase cycle , 2013, Nucleic acids research.

[16]  L. Wyns,et al.  Canonical antigen-binding loop structures in immunoglobulins: more structures, more canonical classes? , 2000, Journal of molecular biology.

[17]  O. Glatter,et al.  19 – Small-Angle X-ray Scattering , 1973 .

[18]  G. Björk,et al.  Further insights into the tRNA modification process controlled by proteins MnmE and GidA of Escherichia coli , 2006, Nucleic acids research.

[19]  C. T. Lauhon,et al.  MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. , 2003, Biochemistry.

[20]  A. Velázquez‐Campoy,et al.  Evolutionarily conserved proteins MnmE and GidA catalyze the formation of two methyluridine derivatives at tRNA wobble positions , 2009, Nucleic acids research.

[21]  M. Schrader,et al.  Dynamin-like Protein 1 Is Involved in Peroxisomal Fission* , 2003, The Journal of Biological Chemistry.

[22]  F. Noé,et al.  Structural insights into dynamin-mediated membrane fission. , 2012, Structure.

[23]  Dmitri I. Svergun,et al.  Electronic Reprint Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering , 2022 .

[24]  Tsutomu Suzuki,et al.  Human Mitochondrial Diseases Associated with tRNA Wobble Modification Deficiency , 2005, RNA biology.

[25]  A. Wittinghofer,et al.  G-domain dimerization orchestrates the tRNA wobble modification reaction in the MnmE/GidA complex. , 2009, Journal of molecular biology.

[26]  V. de Crécy-Lagard,et al.  Decoding in Candidatus Riesia pediculicola, close to a minimal tRNA modification set? , 2012, Trends in cell & molecular biology.

[27]  T. Meitinger,et al.  Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. , 2012, American journal of human genetics.

[28]  Rita Casadio,et al.  Algorithms in Bioinformatics, 5th International Workshop, WABI 2005, Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, WABI.

[29]  Janusz M. Bujnicki,et al.  Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life , 2012, Nucleic acids research.

[30]  Maxim V. Petoukhov,et al.  ATSAS 2.1, a program package for small‐angle scattering data analysis , 2006 .

[31]  A. Wittinghofer,et al.  It takes two to tango: regulation of G proteins by dimerization , 2009, Nature Reviews Molecular Cell Biology.

[32]  Jef Rozenski,et al.  The RNA modification database, RNAMDB: 2011 update , 2010, Nucleic Acids Res..

[33]  I. Vetter,et al.  The structure of the TrmE GTP‐binding protein and its implications for tRNA modification , 2005, The EMBO journal.

[34]  X. Estivill,et al.  Phenotype of non-syndromic deafness associated with the mitochondrial A1555G mutation is modulated by mitochondrial RNA modifying enzymes MTO1 and GTPBP3. , 2004, Molecular genetics and metabolism.

[35]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[36]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[37]  A. Velázquez‐Campoy,et al.  Structure-Function Analysis of Escherichia coli MnmG (GidA), a Highly Conserved tRNA-Modifying Enzyme , 2009, Journal of bacteriology.

[38]  Ruth Nussinov,et al.  PatchDock and SymmDock: servers for rigid and symmetric docking , 2005, Nucleic Acids Res..

[39]  H. Ishikura,et al.  5-(carboxymethylaminomethyl)-2-thiouridine, a new modified nucleoside found at the first letter position of the anticodon. , 1981, Nucleic acids research.

[40]  M. Caparon,et al.  tRNA Modification by GidA/MnmE Is Necessary for Streptococcus pyogenes Virulence: a New Strategy To Make Live Attenuated Strains , 2008, Infection and Immunity.

[41]  Claus Müller,et al.  The General Theory , 1998 .

[42]  A. Wittinghofer,et al.  Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate. , 2008, Journal of molecular biology.

[43]  A. M. van der Bliek,et al.  Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. , 2001, Molecular biology of the cell.

[44]  A. Hopper,et al.  tRNA transfers to the limelight. , 2003, Genes & development.

[45]  B. Ames,et al.  Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. , 1982, The Journal of biological chemistry.

[46]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[47]  MSS1, a nuclear-encoded mitochondrial GTPase involved in the expression of COX1 subunit of cytochrome c oxidase. , 1993, Journal of molecular biology.

[48]  Dmitri I. Svergun,et al.  Uniqueness of ab initio shape determination in small-angle scattering , 2003 .

[49]  G. Fournet,et al.  Small‐Angle Scattering of X‐Rays , 1956 .

[50]  Erik L. L. Sonnhammer,et al.  Kalign – an accurate and fast multiple sequence alignment algorithm , 2005, BMC Bioinformatics.

[51]  D. Schwefel,et al.  Structural insights into oligomerization and mitochondrial remodelling of dynamin 1‐like protein , 2013, The EMBO journal.

[52]  Tsutomu Suzuki,et al.  Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases , 2002, The EMBO journal.

[53]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[54]  H. Rubin,et al.  Characterization of Nucleotide Pools as a Function of Physiological State in Escherichia coli , 2007, Journal of bacteriology.

[55]  A. Wittinghofer,et al.  Dimerisation‐dependent GTPase reaction of MnmE: how potassium acts as GTPase‐activating element , 2006, The EMBO journal.

[56]  A. Chopra,et al.  Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene. , 2011, Microbial pathogenesis.

[57]  A. Benítez-Páez,et al.  Enzymology of tRNA modification in the bacterial MnmEG pathway. , 2012, Biochimie.