Sparse Multiple Correspondence Analysis

In multiple correspondence analysis (MCA), an estimated solution can be transformed into a simple structure in order to simplify the interpretation. The rotation technique is widely used for this purpose. However, an alternative approach, called sparse MCA, has also been proposed. One of the advantages of sparse MCA is that, in contrast to unrotated or rotated ordinary MCA loadings, some loadings in sparse MCA can be exactly zero. A real data example demonstrates that sparse MCA can provide simple solutions.

[1]  H. Kiers,et al.  An application of rotation in correspondence analysis , 2003 .

[2]  N. Trendafilov,et al.  Sparse vs. simple structure loadings , 2013 .

[3]  Alexandre d'Aspremont,et al.  Optimal Solutions for Sparse Principal Component Analysis , 2007, J. Mach. Learn. Res..

[4]  Nickolay T. Trendafilov,et al.  From simple structure to sparse components: a review , 2014, Comput. Stat..

[5]  Cathy W. S. Chen,et al.  Local non-stationarity test in mean for Markov switching GARCH models: an approximate Bayesian approach , 2016, Comput. Stat..

[6]  J. Tukey,et al.  Multiple-Factor Analysis , 1947 .

[7]  Shai Avidan,et al.  Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms , 2005, NIPS.

[8]  Naomichi Makino Generalized data-fitting factor analysis with multiple quantification of categorical variables , 2015, Comput. Stat..

[9]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[10]  Gilbert Saporta,et al.  Sparse principal component analysis for multiblock data and its extension to sparse multiple correspondence analysis , 2012 .

[11]  K. Adachi OBLIQUE PROMAX ROTATION APPLIED TO THE SOLUTIONS IN MULTIPLE CORRESPONDENCE ANALYSIS , 2004 .

[12]  Nickolay T. Trendafilov,et al.  Sparse principal component analysis subject to prespecified cardinality of loadings , 2016, Comput. Stat..

[13]  M. Browne An Overview of Analytic Rotation in Exploratory Factor Analysis , 2001 .

[14]  H. Kiers Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables , 1991 .

[15]  N. Trendafilov,et al.  Sparse Versus Simple Structure Loadings , 2015, Psychometrika.