Recent advances in sparsity-driven signal recovery

We briefly recall previous literature about the interaction between sparsity and /spl lscr/ /sup 1/ minimization. We then discuss /spl lscr/ /sup 1/ minimization in geometry separation, in compressed sensing, and in compressed sensing of separable signals.

[1]  Jean-Jacques Fuchs,et al.  On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.

[2]  B. Logan,et al.  Signal recovery and the large sieve , 1992 .

[3]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[4]  H. L. Taylor,et al.  Deconvolution with the l 1 norm , 1979 .

[5]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[6]  Sudipto Guha,et al.  Near-optimal sparse fourier representations via sampling , 2002, STOC '02.

[7]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[8]  J. Tropp JUST RELAX: CONVEX PROGRAMMING METHODS FOR SUBSET SELECTION AND SPARSE APPROXIMATION , 2004 .

[9]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[10]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Yaakov Tsaig,et al.  Extensions of compressed sensing , 2006, Signal Process..

[12]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[13]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[14]  Xiaoming Huo,et al.  Sparse image representation via combined transforms , 1999 .

[15]  Ronald R. Coifman,et al.  Signal processing and compression with wavelet packets , 1994 .

[16]  Yaakov Tsaig,et al.  Breakdown of equivalence between the minimal l1-norm solution and the sparsest solution , 2006, Signal Process..

[17]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[18]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[19]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[20]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[21]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .