Metal-molecule Schottky junction effects in surface enhanced Raman scattering.

We propose a complementary interpretation of the mechanism responsible for the strong enhancement observed in surface enhanced raman scattering (SERS). The effect of a strong static local electric field due to the Schottky barrier at the metal-molecule junction on SERS is systematically investigated. The study provides a viable explanation to the low repeatability of SERS experiments as well as the Raman peak shifts as observed in SERS and raw Raman spectra. It was found that a strong electrostatic built-in field at the metal-molecule junction along specific orientations can result in 2-4 more orders of enhancement in SERS.

[1]  M. Taniguchi,et al.  Metal−Molecule Interfaces Formed by Noble-Metal−Chalcogen Bonds for Nanoscale Molecular Devices , 2010 .

[2]  R. Dasari,et al.  Surface-enhanced Raman scattering and biophysics , 2001 .

[3]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[4]  R. Jin Nanoparticle clusters light up in SERS. , 2010, Angewandte Chemie.

[5]  R. Birke,et al.  Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions , 1986 .

[6]  B. Garraway,et al.  Adventures in Wave packet land , 1993 .

[7]  K. J. Maynard,et al.  Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver: selection rules and molecular reorientation , 1988 .

[8]  K. Carron,et al.  Axial and azimuthal angle determination with surface-enhanced Raman spectroscopy : thiophenol on copper, silver, and gold metal surfaces , 1991 .

[9]  G. Cardini,et al.  Density Functional Study on the Adsorption of Pyrazole onto Silver Colloidal Particles , 2002 .

[10]  D. Boda,et al.  Relative permittivity of polar liquids. Comparison of theory, experiment, and simulation. , 2005, The journal of physical chemistry. B.

[11]  R. Birke,et al.  The theory of surface-enhanced Raman scattering. , 2012, The Journal of chemical physics.

[12]  Elias Burstein,et al.  “Giant” Raman scattering by adsorbed molecules on metal surfaces , 1979 .

[13]  Hoang T. Nguyen,et al.  Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays , 2010, Nanotechnology.

[14]  Andreas Otto,et al.  Surface roughness induced electronic raman scattering , 1980 .

[15]  Weitao Yang,et al.  Insights into Current Limitations of Density Functional Theory , 2008, Science.

[16]  J. A. Creighton,et al.  ANOMALOUSLY INTENSE RAMAN SPECTRA OF PYRIDINE AT A SILVER ELECTRODE , 1977 .

[17]  W. R. Salaneck,et al.  Characterization of the interface dipole at organic/ metal interfaces. , 2002, Journal of the American Chemical Society.

[18]  Gilles Horowitz,et al.  Organic Field‐Effect Transistors , 1998 .

[19]  S. Lin,et al.  Theoretical differential Raman scattering cross-sections of totally-symmetric vibrational modes of free pyridine and pyridine-metal cluster complexes. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[20]  Bert de Boer,et al.  Tuning of metal work functions with self-assembled monolayers , 2004, SPIE Photonics Europe.

[21]  J. Brédas,et al.  Organic/metal interfaces in self-assembled monolayers of conjugated thiols: A first-principles benchmark study , 2006 .

[22]  A. Aspuru‐Guzik,et al.  On the chemical bonding effects in the Raman response: benzenethiol adsorbed on silver clusters. , 2009, Physical chemistry chemical physics : PCCP.

[23]  J. Brédas,et al.  Interface energetics and level alignment at covalent metal-molecule junctions: pi-conjugated thiols on gold. , 2006, Physical review letters.

[24]  R. Dickson,et al.  Nanoparticle-free single molecule anti-stokes Raman spectroscopy. , 2005, Physical review letters.

[25]  V. Montiel,et al.  In Situ Surface Enhanced Raman Spectroscopy on Electrodes with Platinum and Palladium Nanoparticle Ensembles , 2004 .

[26]  G. Schatz,et al.  Size-dependence of the enhanced Raman scattering of pyridine adsorbed on Agn (n = 2-8, 20) clusters , 2007 .

[27]  F. Cleri,et al.  Interaction of benzene thiol and thiolate with small gold clusters. , 2004, The Journal of chemical physics.

[28]  J. G. Snijders,et al.  APPLICATION OF TIME-DEPENDENT DENSITY FUNCTIONAL RESPONSE THEORY TO RAMAN SCATTERING , 1996 .

[29]  John R. Lombardi,et al.  A Unified Approach to Surface-Enhanced Raman Spectroscopy , 2008 .

[30]  A. Kanjilal,et al.  Barrier formation at organic interfaces in a Cu(100)-benzenethiolate-pentacene heterostructure. , 2008, Physical review letters.

[31]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[32]  Paul S. Bagus,et al.  Vacuum level alignment at organic/metal junctions: “Cushion” effect and the interface dipole , 2005 .

[33]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[34]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[35]  P. Johansson Illustrative direct ab initio calculations of surface Raman spectra. , 2005, Physical chemistry chemical physics : PCCP.

[36]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[37]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[38]  Li-Jun Wan,et al.  Molecular Orientation and Ordered Structure of Benzenethiol Adsorbed on Gold(111) , 2000 .

[39]  T. Ohno,et al.  Density functional theory investigation of benzenethiol adsorption on Au(111). , 2004, The Journal of chemical physics.

[40]  May D. Wang,et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.

[41]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[42]  G. Schatz,et al.  Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives. , 2005, The Journal of chemical physics.

[43]  Martin Moskovits,et al.  Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals , 1978 .

[44]  Hongxing Xu,et al.  Direct visual evidence for chemical mechanisms of SERRS via charge transfer in Au20–pyrazine–Au20 junction , 2009 .

[45]  John R. Lombardi,et al.  Ab Initio Frequency Calculations of Pyridine Adsorbed on an Adatom Model of a SERS Active Site of a Silver Surface , 2003 .

[46]  M. Knupfer,et al.  Energy level alignment at organic/metal interfaces: Dipole and ionization potential , 2002 .

[47]  Roshan L. Aggarwal,et al.  Measurement of the absolute Raman scattering cross section of the 1584-cm−1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates , 2009 .

[48]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[49]  M. Halls,et al.  Surface-Enhanced Raman Spectra of Phthalimide. Interpretation of the SERS Spectra of the Surface Complex Formed on Silver Islands and Colloids , 2000 .

[50]  Michael B. Pomfret,et al.  Measurement of benzenethiol adsorption to nanostructured Pt, Pd, and PtPd films using Raman spectroelectrochemistry. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[51]  T. Iwasita,et al.  Static field effect on the band intensity of adsorbed sulfate ions , 1996 .

[52]  T. Furtak,et al.  Voltage-induced shifting of charge-transfer excitations and their role in surface-enhanced Raman scattering , 1983 .

[53]  R. V. Duyne,et al.  Surface-enhanced resonance Raman scattering from cytochrome c and myoglobin adsorbed on a silver electrode , 1980 .

[54]  R. Birke,et al.  A unified view of surface-enhanced Raman scattering. , 2009, Accounts of chemical research.

[55]  Zhong Lin Wang,et al.  Luminescent and Raman active silver nanoparticles with polycrystalline structure. , 2008, Journal of the American Chemical Society.

[56]  T. Joo,et al.  Surface-enhanced Raman scattering of benzenethiol in silver sol , 1987 .

[57]  Jeffrey N. Anker,et al.  Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: determination of the sticking probability and detection limit time. , 2009, The journal of physical chemistry. A.

[58]  Zhong-Qun Tian,et al.  Density Functional Study and Normal-Mode Analysis of the Bindings and Vibrational Frequency Shifts of the Pyridine-M (M = Cu, Ag, Au, Cu+, Ag+, Au+, and Pt) Complexes , 2002 .

[59]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[60]  M. Nguyen,et al.  Theoretical study of the substituent effects on the S-H bond dissociation energy and ionization energy of 3-pyridinethiol: Prediction of novel antioxidant. , 2006, The journal of physical chemistry. A.

[61]  R. M. Lazorenko-Manevich Adatom Hypothesis as a Predominant Mechanism of Surface Enhanced Raman Scattering: A Review of Experimental Argumentation , 2005 .

[62]  Egbert Zojer,et al.  The interface energetics of self-assembled monolayers on metals. , 2008, Accounts of chemical research.

[63]  D. K. Lambert Electric field induced change of adsorbate vibrational line strength , 1991 .

[64]  David L. Allara,et al.  Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface , 1985 .

[65]  Weidong Ruan,et al.  Nanoparticles: Charge-Transfer Contribution , 2008 .

[66]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[67]  Mostafa A. El-Sayed,et al.  Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition , 2002 .

[68]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. APPLICATION OF RESULTS OBTAINED FROM THE QUANTUM MECHANICS AND FROM A THEORY OF PARAMAGNETIC SUSCEPTIBILITY TO THE STRUCTURE OF MOLECULES , 1931 .

[69]  K. Murakoshi,et al.  Control of near-infrared optical response of metal nano-structured film on glass substrate for intense Raman scattering. , 2006, Faraday discussions.

[70]  J. Ferraris,et al.  The Schottky energy barrier dependence of charge injection in organic light-emitting diodes , 1998 .

[71]  I. Pockrand,et al.  Surface enhanced and disorder induced Raman scattering from silver films , 1981 .

[72]  Satoshi Kawata,et al.  Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell. , 2009, Journal of biomedical optics.

[73]  A. Otto,et al.  Surface enhanced Raman scattering , 1983 .

[74]  Andreas Otto,et al.  The ‘chemical’ (electronic) contribution to surface‐enhanced Raman scattering , 2005 .

[75]  P. Etchegoin,et al.  Polarization-dependent effects in surface-enhanced Raman scattering (SERS). , 2006, Physical chemistry chemical physics : PCCP.

[76]  Anika Kinkhabwala,et al.  Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. , 2006, The Journal of chemical physics.

[77]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[78]  Caroline M. Whelan,et al.  HREELS, XPS, and Electrochemical Study of Benzenethiol Adsorption on Au(111) , 1999 .

[79]  R. Birke,et al.  The effect of molecular structure on voltage induced shifts of charge transfer excitation in surface enhanced Raman scattering , 1984 .

[80]  M. Pagliai,et al.  A density functional study of the SERS spectra of pyridine adsorbed on silver clusters , 2007 .

[81]  M. Petty,et al.  Evaporated thin films of tetrathiafulvalene derivatives and their charge-transfer complexes , 1998 .

[82]  Xudong Jiang,et al.  Chemical effects in surface-enhanced raman scattering: pyridine chemisorbed on silver adatoms on Rh (100) , 1987 .

[83]  Yoshiro Yamashita,et al.  Organic semiconductors for organic field-effect transistors , 2009, Science and technology of advanced materials.

[84]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[85]  Olga Lyandres,et al.  Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor. , 2008, Diabetes technology & therapeutics.

[86]  D. K. Lambert Vibrational Stark effect of adsorbates at electrochemical interfaces , 1996 .

[87]  George C Schatz,et al.  Electronic structure methods for studying surface-enhanced Raman scattering. , 2008, Chemical Society reviews.

[88]  J. F. Arenas,et al.  Charge Transfer Processes in Surface-Enhanced Raman Scattering . Franck-Condon Active Vibrations of Pyridine , 2022 .

[89]  John Bardeen,et al.  Surface States and Rectification at a Metal Semi-Conductor Contact , 1947 .

[90]  De‐Yin Wu,et al.  Density functional theory study of surface-enhanced Raman scattering spectra of pyridine adsorbed on noble and transition metal surfaces , 2005 .

[91]  G. Schatz,et al.  Surface-enhanced raman scattering of pyrazine at the junction between two Ag20 nanoclusters. , 2006, Nano letters.

[92]  S. Datta,et al.  CONDUCTANCE SPECTRA OF MOLECULAR WIRES , 1998 .

[93]  S. Ushioda,et al.  Raman scattering cross section of adsorbed pyridine molecules on a smooth silver surface , 1981 .

[94]  A. Campion,et al.  Surface-enhanced Raman scattering , 1998 .

[95]  Lasse Jensen,et al.  Understanding the molecule-surface chemical coupling in SERS. , 2009, Journal of the American Chemical Society.

[96]  Olga Lyandres,et al.  Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. , 2005, Analytical chemistry.

[97]  R. A. Timm,et al.  Ultrasensitive SERS nanoprobes for hazardous metal ions based on trimercaptotriazine-modified gold nanoparticles. , 2008, Inorganic chemistry.

[98]  John R. Lombardi,et al.  Theory of Enhance I Light Scattering from Molecules Adsorbed at the Metal-Solution Interface , 1979 .

[99]  W. Kohn,et al.  Theory of Metal Surfaces: Work Function , 1971 .

[100]  N. Shah,et al.  Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS) , 2006 .