Parsing Unary Boolean Grammars Using Online Convolution

Consider context-free grammars generating strings over a one-letter alphabet. For the membership problem for such grammars, stated as \Given a grammar G and a string a n , determine whether a n is generated by G", only a nave O(jGj n 2 )-time algorithm is known. This paper develops a new algorithm solving this problem, which is based upon fast multiplication of integers, works in time jGj n log 3 n 2 O(log n) , and is applicable to the more general conjunctive and Boolean grammars. The algorithm is based upon (a simplication of) the online integer multiplication algorithm by Fischer and Stockmeyer (\Fast on-line integer multiplication", Journal of Computer and System Sciences, 1974).

[1]  M. Fischer,et al.  STRING-MATCHING AND OTHER PRODUCTS , 1974 .

[2]  Christian Glaßer,et al.  Satisfiability of algebraic circuits over sets of natural numbers , 2010, Discret. Appl. Math..

[3]  Leslie G. Valiant,et al.  General Context-Free Recognition in Less than Cubic Time , 1975, J. Comput. Syst. Sci..

[4]  Alexander Okhotin Unambiguous Boolean grammars , 2007, Inf. Comput..

[5]  Martin Fürer Faster integer multiplication , 2007, STOC '07.

[6]  Seymour Ginsburg,et al.  Two Families of Languages Related to ALGOL , 1962, JACM.

[7]  Alexander Okhotin,et al.  On the expressive power of univariate equations over sets of natural numbers , 2008, IFIP TCS.

[8]  K. Wagner,et al.  The Complexity of Problems Concerning Graphs with Regularities (Extended Abstract) , 1984, MFCS.

[9]  Alexander Okhotin,et al.  Boolean Grammars , 2003, Developments in Language Theory.

[10]  Artur Jez,et al.  One-Nonterminal Conjunctive Grammars over a Unary Alphabet , 2011, Theory of Computing Systems.

[11]  Artur Jez,et al.  Complexity of solutions of equations over sets of natural numbers , 2008, STACS.

[12]  Michael J. Fischer,et al.  Fast on-line integer multiplication , 1973, STOC '73.

[13]  Christian Glaßer,et al.  Equivalence Problems for Circuits over Sets of Natural Numbers , 2007, Theory of Computing Systems.

[14]  Alexander Okhotin,et al.  Conjunctive Grammars , 2001, J. Autom. Lang. Comb..

[15]  Artur Jez,et al.  Conjunctive Grammars over a Unary Alphabet: Undecidability and Unbounded Growth , 2008, Theory of Computing Systems.

[16]  Dung T. Huynh,et al.  Commutative Grammars: The Complexity of Uniform Word Problems , 1984, Inf. Control..

[17]  Christian Glaßer,et al.  Satisfiability of Algebraic Circuits over Sets of Natural Numbers , 2007, FSTTCS.

[18]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[19]  Alexander Okhotin Fast Parsing for Boolean Grammars: A Generalization of Valiant's Algorithm , 2010, Developments in Language Theory.

[20]  Artur Jez Conjunctive Grammars Can Generate Non-regular Unary Languages , 2007, Developments in Language Theory.

[21]  Pierre McKenzie,et al.  The Complexity of Membership Problems for Circuits Over Sets of Natural Numbers , 2007, computational complexity.

[22]  Artur Jez,et al.  One-Nonterminal Conjunctive Grammars over a Unary Alphabet , 2009, CSR.