A concordance model of the Lyman α forest at z= 1.95

We present 40 fully hydrodynamical numerical simulations of the intergalactic gas that gives rise to the Lyforest. The simulation code, input and output files are available at http://www.cosmos.ucsd.edu/˜gso/index.html. For each simula- tion we predict the observable properties of the H I absorption in QSO spectra. We then find the sets of cosmological and astrophysical parameters that match the QSO spectra. We present our results as scaling relationships between input and output parameters. The input parameters include the main cosmological parameters b, m, �, H0 and �8; and two astrophysical parameters 912 and X228. The parameter 912 controls the rate of ionization of H I, He I and He II and is equivalent to the intensity of the UV background. The second parameter X228 controls the rate of heating from the photoionization of He II and can be related to the shape of the UVB at � < 228 u We show how these input param- eters; especially �8, 912 and X228; effect the output parameters that we measure in simulated spectra. These parameters are the mean flux ¯ F, a measure of the most common Lyline width (b-value) b�, and the 1D power spectrum of the flux on scales from 0.01 - 0.1 s/km. We compare the simulation output to data from Kim et al. (2004) and Tytler et al. (2004) and we give a new measurement of the flux power from HIRES and UVES spectra for the low density IGM alone at z = 1.95. We find that simulations with a wide variety of �8 values, from at least 0.8 - 1.1, can fit the small scale flux power and b-values when we adjust X228 to compensate for the �8 change. We can also use 912 to adjust the H I ionization rate to simultaneously match the mean flux. When we examine only the mean flux, b-values and small scale flux power we can not readily break the strong degeneracy between �8 and X228.

[1]  N. Suzuki,et al.  Cosmological Parameters σ8, the Baryon Density Ωb, the Vacuum Energy Density ΩΛ, the Hubble Constant and the UV Background Intensity from a Calibrated Measurement of H I Lyα Absorption at z = 1.9 , 2004 .

[2]  M. Viel,et al.  The Lyman alpha forest opacity and the metagalactic hydrogen ionization rate at z~ 2-4 , 2004, astro-ph/0411072.

[3]  P. Mcdonald,et al.  Physical effects on the Lyα forest flux power spectrum: damping wings, ionizing radiation fluctuations and galactic winds , 2004, astro-ph/0407378.

[4]  J. Weller,et al.  Constraints on the primordial power spectrum from high-resolution Lyman α forest spectra and WMAP , 2004, astro-ph/0407294.

[5]  A. Loeb,et al.  Unusually Large Fluctuations in the Statistics of Galaxy Formation at High Redshift , 2003, astro-ph/0310338.

[6]  M. Viel,et al.  The effect of (strong) discrete absorption systems on the Lyman α forest flux power spectrum , 2003, astro-ph/0308078.

[7]  Cambridge,et al.  The power spectrum of the flux distribution in the Lyman α forest of a large sample of UVES QSO absorption spectra (LUQAS) , 2003, astro-ph/0308103.

[8]  M. White,et al.  The effects of ultraviolet background correlations on Lyα forest flux statistics , 2003, astro-ph/0307289.

[9]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[10]  R. Mandelbaum,et al.  Precision cosmology from the Lyman α forest: power spectrum and bispectrum , 2003, astro-ph/0302112.

[11]  N. Suzuki,et al.  The Cosmological Baryon Density from the Deuterium-to-Hydrogen Ratio in QSO Absorption Systems: D/H toward Q1243+3047 , 2003, astro-ph/0302006.

[12]  Durham,et al.  Detecting X‐ray filaments in the low‐redshift Universe with XEUS and Constellation‐X , 2002, astro-ph/0210497.

[13]  J. Bond,et al.  Cosmological Parameters from Cosmic Background Imager Observations and Comparisons with BOOMERANG, DASI, and MAXIMA , 2002, astro-ph/0205387.

[14]  P. Mcdonald Toward a Measurement of the Cosmological Geometry at z ~ 2: Predicting Lyα Forest Correlation in Three Dimensions and the Potential of Future Data Sets , 2001, astro-ph/0108064.

[15]  Z. Haiman,et al.  Connections between the Cosmic Baryon Fraction, the Extragalactic Ionizing Background, and Lyman Break Galaxies , 2002 .

[16]  A. Hamilton,et al.  Matter power spectrum from the Lyman-alpha forest: myth or reality? , 2001, astro-ph/0111194.

[17]  J. Silk,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) The phase-diagram of cosmological baryons , 2001 .

[18]  D. Weinberg,et al.  The Influence of Ωb on High-Redshift Structure , 2001, astro-ph/0107293.

[19]  Max Tegmark,et al.  Constraints from the Lyα Forest Power Spectrum , 2000, The Astrophysical Journal.

[20]  C. Steidel,et al.  Lyman-Continuum Emission from Galaxies at z ≃ 3.4 , 2000, astro-ph/0008283.

[21]  R. Croft,et al.  Toward a Precise Measurement of Matter Clustering: Lyα Forest Data at Redshifts 2-4 , 2000, astro-ph/0012324.

[22]  J. Bechtold,et al.  A Uniform Analysis of the Lyα Forest at z = 0-5. II. Measuring the Mean Intensity of the Extragalactic Ionizing Background Using the Proximity Effect , 2000, astro-ph/0004155.

[23]  G. Bryan,et al.  The b Distribution of the Lyα Forest: Probing Cosmology and the Intergalactic Medium , 1999, astro-ph/9906459.

[24]  G. Efstathiou,et al.  The thermal history of the intergalactic medium , 1999, astro-ph/9912432.

[25]  P. Mcdonald,et al.  The Observed Probability Distribution Function, Power Spectrum, and Correlation Function of the Transmitted Flux in the Lyα Forest , 1999, astro-ph/9911196.

[26]  J. Schaye,et al.  Broadening of QSO Lyα forest absorbers , 1999, astro-ph/9908288.

[27]  Cambridge,et al.  Measuring the equation of state of the intergalactic medium , 1999, astro-ph/9906271.

[28]  T. Abel,et al.  Radiative Transfer Effects during Photoheating of the Intergalactic Medium , 1999, astro-ph/9903102.

[29]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[30]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[31]  C. Lawrence,et al.  Evolution of Large-Scale Structure , 1998 .

[32]  G. Bryan,et al.  Resolving the Lyα Forest , 1998, astro-ph/9805340.

[33]  A. Leonard,et al.  P3M‐SPH simulations of the Lyα forest , 1998, astro-ph/9805119.

[34]  R. Croft,et al.  Recovery of the Power Spectrum of Mass Fluctuations from Observations of the Lyα Forest , 1997, astro-ph/9708018.

[35]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[36]  L. Hui,et al.  The b Distribution and the Velocity Structure of Absorption Peaks in the Lyα Forest , 1997, astro-ph/9709100.

[37]  M. Norman,et al.  Physical Properties of the Lyα Forest in a Cold Dark Matter Cosmology , 1997, astro-ph/9706087.

[38]  L. Hui,et al.  Equation of state of the photoionized intergalactic medium , 1996, astro-ph/9612232.

[39]  M. Norman,et al.  Spectral Analysis of the Lyα Forest in a Cold Dark Matter Cosmology , 1996, astro-ph/9609194.

[40]  M. L. Norman,et al.  Modeling primordial gas in numerical cosmology , 1996, astro-ph/9608040.

[41]  M. Norman,et al.  Cosmological hydrodynamics with multi-species chemistry and nonequilibrium ionization and cooling , 1996, astro-ph/9608041.

[42]  L. Hernquist,et al.  The Opacity of the Lyα Forest and Implications for Ωb and the Ionizing Background , 1996, astro-ph/9612245.

[43]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[44]  D. Weinberg,et al.  The Lyman-Alpha Forest in the Cold Dark Matter Model , 1995, astro-ph/9509105.

[45]  R. Cen,et al.  The Lyα Forest from Gravitational Collapse in the Cold Dark Matter + Λ Model , 1995, astro-ph/9511013.

[46]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[47]  M. Norman,et al.  A Multispecies Model for Hydrogen and Helium Absorbers in Lyman-Alpha Forest Clouds , 1995, astro-ph/9508133.

[48]  R. Cen,et al.  Gravitational collapse of small scale structure as the origin of the Lyman alpha forest , 1994, astro-ph/9409017.

[49]  M. Rees,et al.  Reionization and thermal evolution of a photoionized intergalactic medium. , 1994 .

[50]  E. Bertschinger,et al.  Adding Long-wavelength Modes to an N-body Simulation , 1995, astro-ph/9512131.

[51]  A. Boksenberg,et al.  The distribution of Lyman-alpha absorption lines in the spectra of six QSOs: evidence for an intergalactic origin. , 1980 .