Propagation of well-prepared states along Martinet singular geodesics

We prove that for the Martinet wave equation with “flat” metric, which is a subelliptic wave equation, singularities can propagate at any speed between 0 and 1 along any singular geodesic. This is in strong contrast with the usual propagation of singularities at speed 1 for wave equations with elliptic Laplacian.

[1]  W. N. Everitt,et al.  Inequalities and Separation for Certain Ordinary Differential Operators , 1974 .

[2]  Nikhil Savale Spectrum and abnormals in sub-Riemannian geometry: the 4D quasi-contact case , 2019, 1909.00409.

[3]  Tosio Kato Perturbation theory for linear operators , 1966 .

[4]  Chern,et al.  L’Enseignement Mathématique , 2007 .

[5]  R. Melrose The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two , 1984 .

[6]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[7]  B. Helffer,et al.  Proprietes asymptotiques du spectre dioperateurs pseuwdifferentiels sur IRn , 1982 .

[8]  Barry Simon,et al.  Coupling constant analyticity for the anharmonic oscillator , 1970 .

[9]  Christophe Cheverry,et al.  Handbook of Spectral Theory , 2019 .

[10]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[11]  R. Melrose Propagation for the Wave Group of a Positive Subelliptic Second-Order Differential Operator , 1986 .

[12]  J. Martinet Sur les singularités des formes différentielles , 1970 .

[13]  U. Boscain,et al.  A Comprehensive Introduction to Sub-Riemannian Geometry , 2019 .

[14]  B. Helffer,et al.  Spectral properties of higher order anharmonic oscillators , 2009, 0912.0872.

[15]  G. Johnson The Schrödinger equation , 1998 .

[16]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[17]  Y. Egorov,et al.  Fourier Integral Operators , 1994 .

[18]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .

[19]  Richard Montgomery,et al.  Hearing the zero locus of a magnetic field , 1995 .

[20]  Bernard Helffer,et al.  Semi-Classical Analysis for the Schrödinger Operator and Applications , 1988 .

[21]  Bernard Helffer,et al.  Multiple wells in the semi-classical limit I , 1984 .

[22]  Cyril Letrouit Propagation of singularities for subelliptic wave equations , 2021 .

[23]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[24]  R. Montgomery Abnormal Minimizers , 1994 .

[25]  Emmanuel Tr'elat,et al.  Spectral asymptotics for sub-Riemannian Laplacians. I: quantum ergodicity and quantum limits in the 3D contact case , 2015, 1504.07112.