Fast Explicit Operator Splitting Method . Application to the Polymer System

Computing solutions of convection-diffusion equations, e specially in the convection dominated case, is an important and challenging problem tha t requires development of fast, reliable numerical methods. We propose a second-order fast explicit operator splitting (FEOS) method based on the Strang splitting. The main idea of the met hod is to solve the parabolic problem via a discretization of the formula for the exact sol uti n of the heat equation, which is realized using a conservative and accurate quadrature fo mula. The hyperbolic problem is solved by a second-order finite-volume Godunov-type scheme . Th FEOS method is applied to the oneand two-dimensional systems modeling two phase m ulticomponent flow in porous media. Our results demonstrate that the method achieves a re m rkable resolution and accuracy in a very efficient manner, that is, when only few splitting st ep are performed. RÉSUMÉ.Le calcul de solutions d’équations de type convection-diff usion est, specialement dans les cas où les effects convectifs dominent, un problème impo rtant et délicat qui requiert le dévelopement de méthodes numériques rapides, précises et robus tes. Nous proposons une méthode explicite d’ordre deux de type “operator splitting” basée s ur la méthode du “Strang splitting”. L’idée principale est de résoudre un problème parabolique v ia une discrétisation de l’expression de la solution exacte de l’équation de la chaleur par une méthode d’intégration numérique conservative. Le problème hyperbolique est résolu par un sc héma volume finis de type Godunov d’ordre deux. La méthode est appliquée à des systèmes uni et bidimensionels modélisant des écoulements biphasiques en milieu poreux. Nos résultat s ét blissent clairement la remarquable précision et efficacité de la méthode et le fait que seu ls quelques pas de “splitting” sont nécessaires.

[1]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[2]  Jostein R. Natvig,et al.  Numerical Solution of the Polymer System by Front Tracking , 2001, Transport in Porous Media.

[3]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[4]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[5]  G. Petrova,et al.  Adaptive Semi-Discrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws , 2006 .

[6]  Knut-Andreas Lie,et al.  On the Artificial Compression Method for Second-Order Nonoscillatory Central Difference Schemes for Systems of Conservation Laws , 2002, SIAM J. Sci. Comput..

[7]  Ragnar Winther,et al.  The Solution of the Riemann Problem for a Hyperbolic System of Conservation Laws Modeling Polymer Flooding , 1988 .

[8]  A. Tveito Convergence and stability of the Lax-Friedrichs scheme for a nonlinear parabolic polymer flooding problem , 1990 .

[9]  Nils Henrik Risebro,et al.  Front Tracking Applied to a Nonstrictly Hyperbolic System of Conservation Laws , 1991, SIAM J. Sci. Comput..

[10]  K. Karlsen,et al.  Operator spltting methods for systems of convection-diffusion equations: Nonlinear error mechanisms and correction strategies , 2001 .

[11]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .